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Abstract

This project will attempt to create a learning program that teaches itself how to play the game of
checkers using a neural network and particle swarm optimization. Learning will be done by having
the program play checkers numerous times and then evolve based on the outcomes of each game
played.
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Chapter 1

1.1 Introduction

Machine learning is not a new concept in computer science. Arthur L. Samuels Some Studies in
Machine Learning Using the Game of Checkers was originally published in July 1959.

Machine learning is about computer algorithms that allow a computer to learn and is a related
to a branch of statistics called computational learning theory. Neural Networks are but one type of
Machine Learning methods that use input nodes that are connected to a hidden layer via different
weights which are in turn connected to an output layer via more weights.

Checkers is a good game to train as it provides complete information. Which means that the
complete status of any game is known to the players at all times throughout the game.

1.2 Proposal

This project will attempt to create a learning program for the game of checkers using a neural
network and particle swarm optimization to autonomously learn to play checkers from scratch. In
other words, the program will teach itself how to play checkers without any external help.

The main focus of this project will be training of a neural network by having the program play
the game of checkers a multitude of times and then using particle swarm optimization to update
the weights of the networks. By having the program play against itself the goal is that this program
will learn from a predetermined set of rules how to play. Consideration will have to be made in
order to make sure that the neural net for this program is not over trained.

The neural networks will be used to evaluate the the checkers boards and provide a score based
on said board which represent the value of a move that had been made.

The particle swarm optimization will be used to train the neural networks. This will be done
by having the particle swarm optimization fine tune the weights of the neural networks.
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1.3 Project Plan

This project will have four main parts that will take place throughout the year of 2017 with each
part of the project taking place in each quarter of the year.

The first part of the project which is the analysis of the project is the research into what the
project will require and the analysis of said requirements from the stand point of the user and
software. Researching past works related to the project as well as technologies and software related
to the project will assist in guiding the projects development.

The second part of the project is the projects design and development. This entails the creation
of a User Interface Specification and prototype. From this an Object Orientated Analysis and then
an Object Orientated Design can be done. This will take a closer look at the setup of the neural
network and other related software.

The third part of the project is the projects implementation where the design previously done
will be used to create the projects learning program. The implementation will need full documen-
tation.

The final part of the project will be the projects testing, evaluation and presentation. Here the
created program will be tested to determine whether it works according to expectations and refined
if needed.
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Chapter 2

User Requirements

The program shouldnt́ require much from the user. The user simply needs to determine whether
or not the program has developed in its playing abilities.

The program will need to play checkers in some way and learn the best moves to make in order
to win.

How the neural net will work, its layout and application will need to be well thought out. The
interface be it graphical or otherwise will need to be thought.

The program simply needs to show that it has learned how to play checkers without outside
help from a user. Playing against the program should be possible and could be done further but is
not the goal.
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Chapter 3

Requirements Analysis

There are previous works done on autonomous game playing systems that involve various games,
checkers included. One such work, which was mentioned in the introduction, is Arthur L. Samuels
implementation.

Another implementation was done by Nelis Franken and Andries P. Engelbrecht. Particle Swarm
Optimisation was used in the implementation of their game playing program.

Thus one implementation of the checkers game learning/playing program may be done using
the neural net in conjunction with gradient decent in its back propagation and the second using
the particle swarm optimisation technique in its back propagation.

All possible moves need to be analysed and the system should determine which move is the best
one to make in order to win. The program will need a look ahead to determine possible moves.

Testing of the program should be as simple as seeing whether or not the program follows the
rules set out for the game of checkers and if it has learned to play the game properly and the a
decent level of competency.
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Chapter 4

Interface

This program will be interacted with in two different ways. The first is when the training of the
neural network is taking place. The second is that of the checkers game.

4.1 Interface for training

There will not be a graphical user interface for the training portion. The interaction that takes
place during the training will not be accessed by a user and will only have output to show what
is happening during the training process. This output will be visible from within an integrated
development environment (IDE) such as PyCharm.

Figure 4.1: Example of output for checkers games played.

4.2 Interface for the game

The game of checkers that a user can play, will have a graphical user interface. It will have a simple
start button and quit button on the first screen.
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Figure 4.2: Simple Checkers Game GUI.

Once the start button is pressed, a game of checkers will begin where the user will play against
the trained neural network. The quit button will end the program.

The game board will be shown and the user can click on a piece to move and then on the tile
the player wishes to move said piece to. If the move is valid then the piece will move otherwise an
error message will be shown telling the user that it is an invalid move.

Figure 4.3: Example of Checkers Game Board GUI.

When it is the programs turn to play, the board will be evaluated by the neural network and
its selected move will be made. The player may exit the game at any time.
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Chapter 5

High Level Design

This high level design will attempt to give an explanation of the components that will make up
this project. A brief explanation of each component will be given and how these components will
interact.

Figure 5.1: Interaction of Components.

5.1 Interface

The interface will be the playable game that a user will interact with. This Interface will interact
with the checkers game which controls the game being played and the rules for checkers.

5.2 Player

The Player here refers to any user which will play the game of checkers. The player interacts
with the interface which in turn interacts with the checkers game. The player will indicate to the
interface what the player wants to do and the interface will interact with Checkers to determine
whether whatever the player wants to do is valid for the game.
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5.3 Checkers

Checkers refers to the rules and computations behind the interface for the game to work. It will
be responsible for the rules of the game and for the neural network that plays against a Player.
Checkers will interact with the Neural Network when any game is being played, during training as
well as during Training. Checkers also interacts with Training.

Figure 5.2: Basic Depiction of program playing checkers for Training.

5.4 Training

Training will be done before any user can play a game of checkers. Training involves playing a game
of Checkers where the neural network for each agent in the training phase determines which moves
should be done. Once a number of games have been played this way a score, or victory score, is
calculated from the number of wins, losses and draws. Plus one for a win, minus two for a loss and
zero for a draw. Training interacts with the PSO to update the weights of all the agents Neural
Networks after each agents score is calculated.

5.5 Neural Network

The Neural Network will work for any board by taking in a thirty two vector input of all board
positions. The Neural Network will then output a score based on the positions of the board. This
score is obtained for each possible move and the move with the greatest score should be chosen as
the best move for that Neural Network.

5.6 PSO (Particle Swarm Optimization)

The Particle Swarm Optimization will work on all the vectors made up of all the weights for each
agents Neural Network. The victory scores of the agents will be used to determine the global best.
The weights in the vectors will be updated according to a velocity function that takes into account
the global best and each agents personal best.
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Chapter 6

Low Level Design

The low level design will provide more specific details on the components discussed in the high level
design. It will attempt to provide a clear definition of the algorithms used in the creation of the
program.

6.1 The Checkers Game

The core of this project is the neural network which will be trained to play checkers. However, to
do this, one must first have a checkers game to play. The algorithm with which a game will be
played is as such:
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6.1.1 Play Checkers Game Algorithm for random moves

1. Run through all current players checkers pieces.

2. If Piece is a normal piece.

(a) Check positions left forward diagonal and right forward diagonal.

(b) If position is open then add to list of possible moves.

(c) If position contains opponents piece.

i. Check positions diagonally behind opponent piece position.

ii. If position contains any piece ignore.

iii. If position is open then check for further jumps until all jumps have been exhausted,
steps 2(a) and 2(c), then add to list of possible jump moves.

3. If Piece is a King.

(a) Check positions left forward diagonal, right forward diagonal, left back diagonal and
right back diagonal.

(b) If position is open then add to list of possible moves.

(c) If position contains opponents piece.

i. Check positions diagonally behind/in front of opponent piece position.

ii. If position contains any piece ignore.

iii. If position is open then check for further jumps until all jumps have been exhausted,
steps 3(a) and 3(c), then add to list of possible jump moves.

4. If there are possibilities to jump and take opponents piece one of these must be chosen at
random.

5. Else choose random move from all possible non jump moves.

6. If all opponents pieces have been removed from the board. Current player wins. Stop if game
has been completed.

7. Change player. If Player 1 change to Player 2. If Player 2 change to Player 1.

8. Continue above steps until game reaches a conclusion or after 100 moves resulting in a draw.
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6.1.2 Finding Checkers Moves

A list of all possible moves will be created for the 32 possible positions on the board where pieces
can occur. Then a list of the possible moves for a certain board can be extracted from this list
by comparing the positions that are open and which contain pieces to determine which moves are
valid. The algorithm to create said list of all possible moves is created as such:

Figure 6.1: Checkers Board with positions 0-31.

List of possible moves:

• P = [0, 1, 2, ..., 31]

• moves = []

• for all n in p

– if (n % 8) >= 0 and (n % 8) < 4 then

∗ right move = n+4

∗ if n % 8 = 0 then left move = no move

∗ else left move = n+3

– if (n \% 8) >= 4 and (n \% 8) < 8 then

∗ left move = n+4

∗ if n % 8 = 7 then right move = no move

∗ else right move = n+5

• append [n, [left move, right move]] to list moves

6.2 Neural Network

The neural network that will be used as the brain of the checkers playing program will first be
trained. This training will be done to ensure that the neural network used will be able to play
the game of checkers and play the game to a decent competency. At minimum the neural network
should play better than a game played against that of randomly chosen moves.
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In the training of the neural network, the neural network will be used to evaluate board positions
and then output a score of the board. These scores will be attributed to each of the available moves
and the move with the highest score should be chosen as the best move that should then be carried
out. This step will continue throughout the entirety of each played game. This part of the training
is referred to as feed forward.

6.2.1 Neural Networks use within a game of checkers

The move that should be played will be obtained by using the neural network to evaluate all the
possible valid moves as such:

• maxScore = Set very large negative number

• movesList = Obtain all possible valid moves

• index = will contain the index of selected move

• For each move in MovesList do:

– boardCopy = create a copy of the games board. The game board consists of a vector of
size 32. Each element in the vector represents a place on the board, as can be seen in
figure 6.

– Perform the current move and update the vector boardCopy

– value = Use boardCopy as input for the neural Network and obtain output. The output
being a scalar value.

– If value is greater than maxScore then

∗ Make maxScore equal to value

∗ Set index to equal the index of the current move

• Return index as the move that should be played

16



6.2.2 Details on the Neural Network

Figure 6.2: Neural Network Example.

The vector of 32 board positions work as the input for our Neural Network. Then at each
node in the hidden layer its activation value is calculated via a summation function and sigmoidal
evaluation function.

The summation function works, given figure 7 above, as such:

Sum = X1W1 + X2W2 + X3W3 + + XnWn,

where X stands for the values of the inputs and W stands for the values of the weights.

The sigmoidal evaluation function is as such:

f (n) = 1 / 1 + e-n,

where n stands for the value of the node.
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6.3 Particle Swarm Optimization (PSO)

In order to improve the neural networks, that will be played against each other during training,
some back propagation needs to be done in order to update the weights of the neural networks.
Updating the weights iteration after iteration will lead to the neural networks evolving and even-
tually produce one or more networks that will be used in the final checkers game.

A PSO algorithm will be used to update the weights of the neural networks. The PSO will work
on all the weights of each neural network in a population of a certain size. The weights will make
up a vector with each vector corresponding to a particle in the algorithm. Therefore if the swarm
is of size n, there will be n particles representing the weights of each neural network, plus a copy of
each particle which represent its personal best.

Each particle is updated according to two best values. The first is the best value that the
particle has achieved so far, which is the personal best or pbest. The second is the best value is
that of the best out of all the particles in the swarm, which is the global best or gbest.

6.3.1 PSO Algorithm

• Initialise particles from weights of neural networks

• For each particle

– Calculate the fitness value

– If the fitness value is better than the best fitness value, pbest, then set the current value
as the new pbest.

• Choose the particle with the best pbest and set it as the gbest

• For each particle

– Calculate the particle velocity

– Update the particles position

• Repeat above steps for certain number of iterations or until minimum error criteria is met.

6.3.2 Particle velocity function

V = V + ( C1 * rand(0,1) * ( pbest - present ))

+ ( C2 * rand(0,1) * ( gbest - present )),

where c1 and c2 are learning factors, rand(0,1) is a random value between zero and one and present
is the particle as it currently is.

6.3.3 Function for particles position

Present = Present + particle velocity.
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6.3.4 Fitness value

The fitness value is calculated for each particle, which is a vector of each neural networks weights.
The fitness value is calculated after each neural network has played a number of games against
other randomly selected neural networks. After each game the fitness value is updated by +1 for a
win, -2 for a loss and 0 for a draw.
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Chapter 7

Implementation

7.1 Developed on:

• Windows 8.1 / Ubuntu 16.04.1

• Python 3.5

• PyCharm Community Edition 2016.2.2

• Python modules used: math, time, random

7.2 Introduction

The purpose of this project is to create an intelligent game playing agent using neural networks
and particle swarm optimisation for the game of checkers.

What follows, are the names of the classes that are used for training the neural networks and
playing the game of checkers. Only the significant functions have been listed below.

Following that is a challenge encountered while coding this project.

Following that is a summary of the results obtained from the training performed.
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7.3 Core Code Documentation

7.3.1 Implementation Algorithm

The algorithm used to train the neural networks using particle swarm optimization is as follows:

For 15 iterations:

1. Create population of players which are the neural networks.

2. Instantiate PSO class and associated variables. Associated variables are; initial fitness, index
of the best initial fitness and the weight vector of each network in the population.

3. For 500 iterations:

(a) Update the personal best and global best particles according to new fitness.

(b) Update each particles velocity according to velocity function.

(c) Calculate Fitness of all players in population.

4. Obtain network with global best fitness from population.

5. Test global best vs random played moves 10000 times as white player.

6. Test global best vs random played moves 10000 times as black player.

This algorithm produces fifteen trained neural networks that had the best fitness for each of its
respective generations. The results from these fifteen neural networks are what is recorded and of
these two was chosen to play against a human player. One neural network to act as a white player
and another to act as the black player. This also gives the human player the option to watch these
two well trained neural networks play each other.

7.3.2 Fitness Algorithm

The fitness of each neural network or ”player” in the population is calculated as such:

For 15 iterations:

1. Create varible fitness and set to zero.

2. Play a game of checkers with the nueral network for which the fitness is for as player one and
it’s opponant neural network as player two. Save the result of the game.

3. If player one is the victor:

(a) Fitness plus one.

4. If player two is the victor:

(a) Fitness minus 2.

5. If the game was a draw:
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(a) Fitness plus zero.

For example, one outcome of using this algorithm to find the fitness for a ”player” is, the ”player”
wins two games, which is a plus 2, loses one game, which is a mius 2, and draws the others which
results in a zero. This would lead to a fitness of zero.

This fitness value represents how well the neural network evaluates the chekers boards, or how
well the ”player” can play the game of checkers.

7.3.3 Checkers Algorithm - for two Neural Networks

In order to play a game of checkers with two neural networks or ”players” from the population
playing each other, the following algorithm was implemented:

1. Start Game

2. For 100 iterations:

(a) For player one’s turn:

i. Obtain all availble moves that can be made and store to an array.

ii. If there are no jump moves and there are no single moves:

A. Return that player two wins as there are no moves for player one to make.

iii. If there are no jump moves:

A. Calculate the score of each available move using the nueral network feed forward
function. Store each score in an array.

B. Obtain the index of the highest score from the array of all the scores.

C. Make the move using the index of the highest score.

iv. If there are jump moves:

A. Calculate all possible jumps paths from original jump moves and store in new
array.

B. Calculate the score of each available jump path using the nueral network feed
forward function. Store each score in an array.

C. Obtain the index of the highest score from the array of all the scores.

D. Make the jump using the index of the highest score.

(b) For player two’s turn:

i. Obtain all availble moves that can be made and store to an array.

ii. If there are no jump moves and there are no single moves:

A. Return that player two wins as there are no moves for player one to make.

iii. If there are no jump moves:

A. Calculate the score of each available move using the nueral network feed forward
function. Store each score in an array.

B. Obtain the index of the highest score from the array of all the scores.

C. Make the move using the index of the highest score.
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iv. If there are jump moves:

A. Calculate all possible jumps paths from original jump moves and store in new
array.

B. Calculate the score of each available jump path using the nueral network feed
forward function. Store each score in an array.

C. Obtain the index of the highest score from the array of all the scores.

D. Make the jump using the index of the highest score.

(c) Check if there is a winner.

(d) If there is a winner:

i. Return the result of the game

3. If after the 100 iterations are complete and there is no victor then return the game as a draw.

In this algorithm you can see the difference from that of a checkers game played with only
randomly selected moves which can be found under the low level design. Now all the moves in the
game need to be scored by the neural network or ”player” and that score determines which move
should then be made. The neural network essentially works as the player’s brain, selecting which
moves shoud best be played according to a given board.
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7.3.4 Calculate Jump Path Algorithm

Calculating the jump paths is a recursive function created to find all the different branching paths
that a piece can take when there are subsequent jumps available after the initial jump has been
made. This is needed as all the possible paths represent different moves that can be made and each
of these moves needs to be evaluated by the neural networks playing the game of checkers.

This works by using a copy of the checkers board so that jumps can be made and then subsequent
jumps found where available. Function name is calculateJumpPaths.

1. Get the type of the piece to move. ie. if the piece is a normal piece or king. This determines
which direction to look for more jumps.

2. Make initial jump.

3. Find new available jumps according to the type. Store new jumps into an array.

4. Create an empty array for the output.

5. If there are no new jumps:

(a) Append jump to output array.

6. Else if there is 1 new jump:

(a) Append jump to output array.

(b) Append calculateJumpPaths for the new jump to output array.

7. Else if there are 2 new jumps:

(a) Append jump to output array.

(b) Append calculateJumpPaths for the first new jump to output array.

(c) Append calculateJumpPaths for the second new jump to output array.

8. Else if there are 3 new jumps:

(a) Append jump to output array.

(b) Append calculateJumpPaths for the first new jump to output array.

(c) Append calculateJumpPaths for the second new jump to output array.

(d) Append calculateJumpPaths for the third new jump to output array.

9. Else if there are 4 new jumps:

(a) Append jump to output array.

(b) Append calculateJumpPaths for the first new jump to output array.

(c) Append calculateJumpPaths for the second new jump to output array.

(d) Append calculateJumpPaths for the third new jump to output array.

(e) Append calculateJumpPaths for the fourth new jump to output array.

10. Return the output array.
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Figure 7.1: Class Diagram depicting how the classes interact with each other for training.

7.3.5 Checkers Class

This class contained all the necessary functions to run the checkers game. This includes the rules
of the game, moving pieces, calculating jump paths, showing the board, etc. as well as different
types of game functions for different purposes, such as random player versus random player, neural
network versus random player, neural network versus neural network and neural network versus a
human player.

showBoardV2 () - This function prints out a representation of the checkers board.

gameTestNN (bool, nn1, nn2) - This function is used to play a game of checkers where two
neural networks play each other.

gameTestNN White (bool, nn) - This function is used to play a game of checkers where a neural
network plays white against randomly selected moves for black.

gameTestNN Black (bool, nn) - This function is used to play a game of checkers where a neural
network plays black against randomly selected moves for white.

playGameAsWhite (bool, nn) - This function is used to play a game of checkers where a neural
network plays black against a human player that plays white.

playGameAsBlack (bool, nn) - This function is used to play a game of checkers where a neural
network plays white against a human player that plays black.
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7.3.6 NeuralNetwork Class

The main work this class performs is the calculation of the fitness for each board passed to it from
the Checkers class. It also interacts with the CheckersPSO class by passing a weight vector back
and forth.

updateWeights (weight vector) - Updates the weights of the neural network with that of the
weights passed to it via the weight vector.

calculateHiddenNodes () - Calculates the hidden nodes of the neural network.

calculateOutputNodes () - Calculates the output nodes of the neural network.

feedForward (input vector) - runs the neural network and returns a fitness value for an input
vector passed to it which is a board vector. The ouput for this function is a decimal value between
0 and 1. For example one output of this function might be the value 0.377452, another 0.856331.

7.3.7 CheckersPSO Class

The main work this class performs is the calculation of the fitness for each board passed to it from
the Checkers class. It also interacts with the CheckersPSO class by passing a weight vector back
and forth.

updateWeights (weight vector) - Updates the weights of the neural network with that of the
weights passed to it via the weight vector.

calculateHiddenNodes () - Calculates the hidden nodes of the neural network.

calculateOutputNodes () - Calculates the output nodes of the neural network.

feedForward (input vector) - runs the neural network and returns a fitness value for an input
vector passed to it which is a board vector.

26



7.3.8 Train Class

This class brought all the pieces together to train the neural networks, utilising functions from the
Checkers, NeuralNetwork and CheckersPSO classes.

calculateFitness () - Calculates the fitness of all neural networks by playing the neural networks
against others randomly in the population. Fitness is obtained as a plus one on a win and minus
two on a loss. Makes use of the Checkers and NeuralNetwork classes.

obtainBestPlayer () - Trains the neural networks and returns the neural network which is the
global best. Makes use of the CheckersPSO class and calculate fitness function.

testPlayerWhite (player) - Tests the neural network player as white versus a player that makes
randomly selected moves as black. Makes use of the Checkers class.

testPlayerBlack (player) - Tests the neural network player as black versus a player that makes
randomly selected moves as white. Makes use of the Checkers class.
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7.4 Coding Challenges

7.4.1 Jump Paths

There were various challenges involved with every part of the implementation for this project.
However the most challenging part of the coding, I found, came from the checkers game itself,
specifically with the rule that allows any piece in the game to jump multiple times so long as there
is a piece that it may take.

This rule allows for a jump to take many different paths that all need to be addressed so that the
neural network may evaluate each and then be able to choose the best jump to be made according
to its calculation. This can be seen in the figure below which shows a board where the white player
has an option of three different jumps. These jumps are 24 to 29, 14 to 23 or 14 to 21 to 28.

Figure 7.2: Checkers board displaying different possible jumps.

The solution I came up with works using a number of steps. It uses three functions to produce
a list of all possible jump paths from a given jump. These functions are; calculateJumpPaths (),
createJumpPathsBuilder () and flattenJumpPathArray ().
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This solution works by using a recursive search to find each branching jump and appending
them to a list. This list is then flattened so that instead of the list of lists that was produced it is
instead one long list. This flattened list is then used to extract all the jump paths that are available
to the starting jump and returned to be evaluated.

The following figure is an example of the solution.

Figure 7.3: Checkers board with a scenario where multiple jump paths are available after the first
jump.

Each pair of numbers represents the starting position and the position to move to.
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7.4.2 Incorrect Board Setting

Another challenge, which occured early into the implementation, came up when testing of the ran-
domly selected moves games were being played in order to create a baseline with which to compare
future results. These games were being played by the hundred thousands. The problem was only
noticed when the testing was tried for one million games. After the five hundred thousand iteration
mark the results shown started to become noticebly wrong. Games would complete far too quickly
and one player would win all the games no matter how many games were played.

What was found later was that there was an error in the way that the boards were resetting
every iteration. The boards were not resetting the way that they should have been. The issue was
that the remaining peices that were left over after each game were not being removed in certain
parts of the board, thus sometimes games would begin with more piece than they should have. This
obviously lead to a major bug, however it only required a very minor fix to remove.

The solution was to completely rewrite the entire board each time a new game started thus
ensuring that no pieces were left over from previous games.

7.4.3 Incorrect Array Copying

Another issue which came up more than once was incorrect copying of arrays. Python has a nice
way in which to copy arrays. You can use a substring command to copy everything from an array
and make a new one. The command looks like this:

arrayCopy = array[:]

However, if you don’t do this correctly you may end up with a reference to the array you want
a copy of instead of an actual copy. This is very bad when you want to be able to use both arrays
for different things, as making a change to one of the arrays will result in the change occuring in
both arrays. Thus special care must be taken to ensure that arrays are correctly copied to avoid
unnecessary errors from occuring.
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7.5 Training Results

The following is the results obtained after the training of the neural networks had been done.

The training was done fifteen times in order to obtain fifteen different trained neural networks.
Each of the fifteen training iterations was run 500 times. Within those 500 training iterations, a
population of forty neural networks were used.

Each in the population played 15 games randomly versus others in the population in order to
establish its fitness value. The fitness was value obtained using the neural networks with the sig-
moid function as the activation function.

The maximum velocity for the particle swarm optimization function was set to 0.15, the learning
factors and the constrict value were all set to one.

Each iteration ended with testing the global best obtained versus a player making random moves
ten thousand times as the white player and then as the black player.

Figure 7.4: Table showing the highest win rates.

The best result obtained was on the eighth iteration when played as white, which had a win
rate of 82.46 percent versus a player making random moves. The best for black, iteration 13, with
a win rate of 76.68 percent. These neural networks were selected for use so that a human player
may be able to play against them.
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Figure 7.5: Table showing the average win rates.

In total, the training of the fifteen neural networks took thirty hours, fourteen minutes and forty
four seconds. The overall average obtained was a win rate of 61.73 percent. This training was run
on Ubuntu 16.04.1.

The training was run a final time utilizing the already trained networks in the population in
order to determine if a better win rate was possible. The results obtained, was a global best that
managed a 75.64 percent win rate as the white player and a 46.96 percent win rate as the black
player. The training for this took an additional two hours, fifteen minutes and fourteen seconds.

32



7.6 Glossary
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