

IP-BASED PUSH TO TALK ON A

MOBILE PHONE

by

Hlabishi Isaac Kobo

A thesis submitted in partial fulfillment of
the requirements for the degree of

Baccalaureous Scientiae (Honours)

University of the Western Cape

2009

Date: September 9, 2009

University of the Western Cape

Abstract

IP-BASED PUSH TO TALK ON

MOBILE HANDSET

By

Hlabishi Kobo

Supervisory Committee:
Supervisor: W.D Tucker

Co-Supervisor: M.J Norman
Department of Computer Science

Push-to-talk (PTT) is a new approach to voice communication which emulates

walkie-talkie system. The main purpose of this project is to implement PTT on

a cellular mobile phone (PoC). PoC is an instant messaging service like a

voice SMS. Instead of dialing, you "push" a button and speak. When you

release the button the message is sent. Communication is bidirectional but not

simultaneous (half-duplex).

TABLE OF CONTENTS

TABLE OF CONTENTS ... 2

LIST OF FIGURES .. 4

LIST OF TABLES .. 5

ACKNOWLEDGMENTS ... 6

GLOSSARY ... 7

CHAPTER 1 ... 8
INTRODUCTION ... 8

introduction .. 8
motivation .. 9
thesis layout ... 9

CHAPTER 2 ... 10
user requirements document .. 10

introduction .. 10
users view of the problem ... 10
brief description of the problem domain .. 10
complete description of the problem.. 11
what the software solution is capable of doing .. 11
what the software solution is not capable of doing.. 12

CHAPTER 3 ... 15
requirements analysis document .. 15

introduction .. 15
designers interpretation of the problem ... 15
breakdown of problem into high level constituent parts ... 16
deep analysis of parts and identification of relevant details .. 17
existing solutions .. 19
linking the solution to the problem ... 20

CHAPTER 4 ... 22
user interface specification ... 22

introduction .. 22
description of the complete user interface ... 22
what the user interface looks like to the user ... 23
how the user interface behaves .. 24
how the user interacts with the system .. 25
summary ... 26

CHAPTER 5 ... 27
high level design (Object oriented analysis) ... 27

introduction .. 27
data dictionary of each object representation .. 27
user interaction design (use case diagram) ... 29
class diagrams showing the name, attributes, and methods of each class 30
the relationship between objects .. 31
class diagrams and data dictionary for the interface domain .. 32
class diagrams and data dictionary for the application domain ... 34
Summary .. 34

CHAPTER 6 ... 36
low level design (Object oriented design) ... 36

introduction .. 36
inner details of class attribute (data types) ... 36
inner details of class methods (functions) ... 37
state diagram of the floor control ... 41
pseudo-code ... 43

CHAPTER 7 ... 59
implementaton .. 59

introduction .. 59
Software’s deployed .. 59
hardware’s deployed ... 61
challenges ... 61
code documentation .. 62
summary ... 67

APPENDICES .. 68

Appendix A ... 68
project plan term1 .. 68

Appendix B ... 70
planning term 2 .. 70

Appendix C ... 72
planning term 3 .. 72

BIBLIOGRAPHY .. 74

INDEX .. 75

LIST OF FIGURES

Number Page
FIGURE 1: PUSH TO TALK CONCEPT ... 16
FIGURE 2: THE MAIN INTERFACE OF THE SOLUTION .. 23
FIGURE 3: FEEDBACK OF EVERY OPERATION OF THE OPTION SOFT KEY .. 24
FIGURE 4: THE PLAY FUNCTION ... 25
FIGURE 5: THE RECORD FUNCTION ... 26
FIGURE 6: USE CASE DIAGRAM OF THE SOLUTION. .. 29
FIGURE 7: FLOOR CONTROL CLASS. .. 30
FIGURE 8: CLASS DIAGRAM DEPICTING VARIOUS CLASSES OF THE PROBLEM SOLUTION. 31
FIGURE 9: THE RELATIONSHIP BETWEEN CLASSES. ... 32
FIGURE 10: CLASS DIAGRAMS OF THE INTERFACE DOMAIN. .. 33
FIGURE 11: CLASS DIAGRAMS OF THE SOLUTION’S APPLICATION DOMAIN. .. 34
FIGURE 12: STATE DIAGRAM OF THE FLOOR CONTROL. .. 42

LIST OF TABLES

Number Page
TABLE 1 : THE RESPONSES OF THE INTERVIEWEES ARE SUMMARIZED. ... 14
TABLE 2: EXISTING PTT SOLUTION. .. 20
TABLE 3 : THIS TABLE DESCRIBES THE VARIOUS OBJECT OF THE SOLUTION.. 29
TABLE 4 : DATA DICTIONARY OF THE INTERFACE OF THE APPLICATION DOMAIN. 33
TABLE 6 : AN INNER DETAILS OF CLASS METHODS (FUNCTIONS). ... 41
TABLE 7 : DATA DICTIONARY OF THE CONTROL. ... 42
TABLE 1A : PLANNING FOR TERM 1. ... 69
TABLE 2A : DETAILED PLANNING FOR TERM 2 ... 71
TABLE 3A : DETAILED PLANNING FOR TERM 3 ... 73

ACKNOWLEDGMENTS

The author wishes to [Click and type acknowledgments]

GLOSSARY

PTT – Push-to-Talk

PoC - Push-to-talk over a cellular

RTP - Real Time Protocols

RTCP - RTP Control Protocol

SIP - Session Initiation Protocol

C h a p t e r 1

INTRODUCTION

INTRODUCTION

IP-based Push to talk over cell phone (PoC) is an IP-based voice

communication on a mobile phone. Push to talk is a new instant messaging

type of communication. PoC is the implementation of walkie-talkie concept of

communication on a mobile phone. PTT is different from the old walkie-talkie

system because it operates within the internet network in Voice over Internet

Protocol (VoIP) instead of radio frequencies. PoC use half-duplex

communication where only one

Transmission of voice messages occurs through the press of a button. Instead

of dialing a person “you press a button and speak”. When you release the

button the voice message is sent. PoC supports 2.5 and 3 generations of

cellular networks as well as future generations of cellular networks. The

reason being that PoC is based on internet protocol (IP-based). The

transmission of data occurs through an IP packet-switching. Thus the main

purpose of this project is to implement PoC over Wi-Fi supported cell phones.

The concept of PoC was introduced in 2003. The standardization of PoC

started in 2004 and the first version was finalized in 2005. In June 2006 the

first the version OMA PoC 1.0 version was released. Open mobile alliance

(OMA) is the official standard that oversees all the infrastructures and

processes supporting PoC.

PoC is available on many cellular networks around the world, but not in South

Africa. In USA Nextel communications and Motorola network providers

offers the service while orange and Vodafone does it for UK.

MOTIVATION

Most South Africans have joined the community mobile instant messaging

through Mxit. Mxit is an text based IM, so introducing a voice based IM will

enhance the flexibility of interest in the Mobile IM’s. IP-based Push to Talk on

a mobile phone is cost effective due to its half-duplex nature of

communication. This kind of communication makes it to consume less

bandwidth. The application among other things is fast to process making it

suitable to be used in variety of situations such as emergencies, work place and

etc.

THESIS LAYOUT

C h a p t e r 2

USER REQUIREMENTS DOCUMENT

INTRODUCTION

In this chapter User Requirement Document (URD) is discussed. We look at

the user’s view of the problem, brief description of the problem domain as

well as a complete description of the problem domain. The expectations of the

software capabilities are discussed, together with what the software is not

expected to do. The URD was obtained by conducting a survey. More than ten

people from different faculties at the University of the Western Cape were

given questionnaires.

USERS VIEW OF THE PROBLEM

All most all the instant messaging services offered on a mobile phone are text-

based. According to the survey carried out, many users are still using short

messaging services (sms). However users want a convenient way of

exchanging messages. According to most of them, sms are not convenient in

urgent situations due to the amount of time it takes to process. Another outcry

of the users is the fact that current services are not economically friendly. A

text IM can only be sent to one user, group chat are not supported.

BRIEF DESCRIPTION OF THE PROBLEM DOMAIN

Most users, youth in particular want to engage in social interactive

communications with friends, family, colleagues etc. Users want voice instant

messaging in place of text IM’s and the service has to be costless. The system

must support real time communication without any difficulties. Majority of

people have seen push to talk application on their mobile phones. About 70%

of the people from the carried survey have the application integrated on their

mobile phones but they cannot use it because network service providers do not

support it. However Vodacom offers the application for only corporate

customers. Some of the areas supported include construction, transport,

security, distribution, manufacturing, and surface mining, as well as

companies operating in the catering, hospitality and courier industries (Pieter

Uys, Vodacom Chief Operating Officer, December 2005.)

COMPLETE DESCRIPTION OF THE PROBLEM

Majority of South Africans are using text-based instant messaging which takes

long to process. Users encounter difficulties to apply text instant messaging to

in urgent situation. Users often make use of “Language compressing” to

enhance the speed of the process as well as reducing the amount of data to be

sent. This type of vocabulary turns to lose the contextual meaning of the

message. This is mainly because people have different understanding of the

language. However this language is effective when used between English

literate people. In contrary the English literacy of people in our society is very

low. Thus for this reason most people deduce that text based instant messaging

is not multilingually friendly. This leads to people not enjoying the optimum

courtesy of the service. Among other technical problems caused by the

frequent use of text IM’s is the key pad.

Text based IM can also pose danger to the society [2] because of the

depersonification. “A 35 year old allegedly abducted a 16 year old girl whom

he met in the mxit chart room, due to exchanging personal information such as

home address”[2].

WHAT THE SOFTWARE SOLUTION IS CAPABLE OF DOING

The software will enable people to engage in instant messaging in the form of

voice instead of text. The software is expected to offer availability of service

throughout the network domain. The following features are also expected from

the software:

Instant one to one communication

Instant group communication

Efficient contact list management e.g. ability to add, delete contacts

Good alert notification

WHAT THE SOFTWARE SOLUTION IS NOT CAPABLE OF DOING

Users should not expect to transmit videos from the final product. The

software is presence orientated, so voice mail messages cannot be expected.

The transmission of photos is also not supported. The software would only

work on IP-based network phones.

The following table 1 shows some of the questions carried out in the survey as

well as the results.

Question Response (%)

 YES NO UNANSWERED

Do you use Instant messaging applications (MSN

Messenger, Google Talk, Mxit etc.) and VoIP applications

(Skype etc.)?

90 10

Have you used any PTT system e.g Walkie-Talkie? 10 90

Have you heard about push to talk application on mobile

phone before?

70 30

Do you know anyone who uses PTT on a cellular phone? 10 60 30

Does your mobile phone have push-to-talk application? 50 20 30

Have you used push-to-talk before? 0 70 30

How often do you use Instant Messaging applications? 10 Do not use it

20 Once a week

70 Daily

In which kinds of situations do you think that PoC-service

is most useful?

Emergency services

Quick messaging

Occasions

Construction companies

In what kinds of situations do you think you would be

likely to use PoC?

In place of an sms

Overcrowded situations e.g.

parties, stadium, forest

Emergency features again

Saving money

Students on-campus

communication

Table 1 : The responses of the interviewees are summarized.

C h a p t e r 3

REQUIREMENTS ANALYSIS DOCUMENT

INTRODUCTION

This section analyzes the user requirements from the previous section. This is

the designer’s view of the problem. The user requirements are interpreted

systematically from the designer’s perspective. The problem is broken down

into high level constituent parts. These parts are deeply analyzed and all

relevant details are identified. We identify existing solutions as well as

alternative technical solutions. Among the existing solutions, we identify the

suitable one to solve our problem. We finally look at ways in which the

solution can be tested.

DESIGNERS INTERPRETATION OF THE PROBLEM

The system is Voice over Internet Protocol application. It introduces the

transition of text to voice in instant messaging. The project will be

implemented using a client-server approach. Mobile phones will carry the

PoC-client and the server would act as an interface of communication.

There are basic factors that have to be considered during the implementation.

The voice quality is very critical and thus has to be constantly monitored. Real

Time Protocols (RTP) used to carry the audio streams. In addition, RTP

control protocol would be used to monitor the quality of the voice as well as

keeping track of all transmissions.

Figure 1: Push to talk concept

The system is IP-based, implemented in a half-duplex communication to

ensure the efficiency of the bandwidth. Our push to talk would be using

Session Initiation Protocol (SIP) for signaling. User interfaces are required to

ensure easy to use system. Contact list interface will be implemented. This will

display presence and status information of other users. The presence feature

will be managed by SIMPLE protocol. The status information will ensure

there are no interruptions.

BREAKDOWN OF PROBLEM INTO HIGH LEVEL CONSTITUENT PARTS

PoC server would be responsible for PTT session setup using SIP, floor

control, VoIP steaming (voice distribution) and signal control.

PoC client feature will be integrated on the mobile phone. This feature will

consist of user interfaces.

Presence information

Contact list management

Protocols to be deployed

Real Time Protocols (RTP)

RTP Control Protocol (RTCP)

Session Initiation Protocol (SIP)

SIMPLE Protocol

Internet Protocol Multimedia Subsystem (IMS)

SIP application server

DEEP ANALYSIS OF PARTS AND IDENTIFICATION OF RELEVANT DETAILS

PoC server

The PoC server relays the calls from one client (e.g. sender) to the other (e.g.

reciever). It controls both the call control and the floor control.

Session setup

Session Initiation (SIP) protocol is an application layer protocol for creating,

modifying and terminating sessions with one or more participants [3]. During

the session setup, the transmission has to be evaluated to check its validity.

Thus SIP includes authentication and authorization to ensuring security. SIP

uses SIMPLE protocol to manage the presence information.

Floor control

This feature mediates the PTT calls and decides whether to grant a call or not.

One user makes a request to send someone a PTT message. This feature uses

RTCP to give permissions and identify the intended receiver.

Floor request – request permission to engage in a PTT session.

Floor release – The results of the request (permission rights).

Floor grant – user granted the floor.

Floor idle indication – floor is idle.

Floor deny - floor request denied.

Floor taken – floor has been granted to the indicated user (occur to involved

participants).

Floor revoke – after the session the floor is withdrawn.

 Internet Protocol Multimedia Subsystem (IMS)

IMS is a platform for Internet Protocol multimedia services. This platform

contains a SIP application server on which mobile data services like PoC are

based. The servers handle session and group control, VoIP streaming, stream

control, provisioning and management of users and groups [3].

PoC client

This is embedded in the mobile phone. The phone must support IP-based

media like WI-FI. The phone must support SIP protocols as well as VoIP

features.

Contact list management - allows the user to add and delete contacts. This

contains the contact list which shows every contact that the user is acquainted

to.

Presence information - Shows online people in your contact list.

EXISTING SOLUTIONS

Push to talk over a cell phone is available in many countries around the world.

This service is being offered by mobile service providers. Most of the current

PoC solutions are practically similar. The only difference is that they are being

offered by different vendors. This uses the architecture of 3GPP (3rd

Generation Partnership Project) IMS. Current PoC solutions are available on

native OS, Symbian OS, PocketPC operating systems and supports GPRS,

EDGE and UMTS mediums. They support 2.5 and 3 generations of cellular

network. Table 1 shows some of the PoC service providers.

Service Providers Country

Nextel

Communications

USA

Sprint USA

Motorola USA

T-Mobile Germany

Orange UK

Vodafone UK

Celtius Finland

Saunalahti Finland

M I Mobile Singapore

India Hutch

Table 2: Existing PTT solution.

LINKING THE SOLUTION TO THE PROBLEM

All the solution present exactly what the users want. In South Africa none of

the three major service providers are offering it. The solutions offers voice

instant messaging which is the basic functionality in our project. All the

solutions are implemented on half-duplex communication, so bandwidth is

efficiently used. The only additional feature is the fact that we will implement

our solution on Wi-Fi network.

Best solution

Although the implementation of this project will be slightly different from the

existing solutions, the underlying architecture is similar. The best solution in

consideration is Celtius PoC. This solution covers most of the user

requirements. Since the project has to implement a PoC server, Celtius present

common solution.

Testing

The solution will first be tested on an emulator and then move to the actual

phone.

C h a p t e r 4

USER INTERFACE SPECIFICATION

INTRODUCTION

In the previous chapter; the analysis of the user requirements mentioned

chapter 2 were discussed. The user requirements which are based on the user’s

perspective are were analyzed from the designer’s perspective. Possible

solutions together with possible methods of implementation were discussed.

This chapter introduces the User Interface Specification (UIS). The description

of the UIS includes the snap shots of the interfaces (screen) that the user

interacts with. This chapter describes exactly what the user interface is going

to do, what it looks like, and how the user interacts with the program.

DESCRIPTION OF THE COMPLETE USER INTERFACE

The UIS consists of one main graphical user interface (GUI), which consists

with different operations enlisted in the options. The UIS shows the snap shot

of the Symbian s60 emulator. The main window shows two routes options and

exit. The options on the menu are:

Play – play the audio file

Record – used to record the audio

Stop – stops every operation (e.g. record, play)

Send - sends the audio file to another user via File Transfer protocol (FTP)

Save – saves the audio file in the emulator’s memory

Loads - loads the audio file from the emulator

Exit - closes the application

WHAT THE USER INTERFACE LOOKS LIKE TO THE USER

Figure 2 shows the complete UIS. The main screen (background) shows the

progress of each operation as well as the feedback after operation. This enables

the user to see the status of the operation carried out. The left part of Figure 2

shows the whole emulator while the other one on the right only shows the

screen.

Figure 2: The main interface of the solution

HOW THE USER INTERFACE BEHAVES

The user interface enables the user to carry out operations that are listed. For

each operation, a progress /feedback notification is displayed on the

background screen. The system can be ported on a Symbian supported cell

phone. The UI enables the user to record, play, send, load, stop and save the

audio file. The send option first connects to the FTP server and uploads the

audio file on the server. On the other hand, the Load option checks the server

periodically for new messages (the audio file) and downloads it. The following

figure 3 shows the feedback notifications n the main screen of the UI.

Figure 3: Feedback of every operation of the option soft key

HOW THE USER INTERACTS WITH THE SYSTEM

The user must first record an audio through the Record option to be able to use

the other functions. Microphone can be used to record the audio. Figure 4

shows the record function while Figure 5 shows the Play function.

Figure 4: The play function

After recording the audio can be sent to another user. The other operations are

applicable only the emulator.

Figure 5: The record function

SUMMARY

In this chapter User Interface were analyzed and observed. The various screens

involved on the cell phone where analyzed. The various options or a menu that

enables the user to interact with the application were analyzed. In the next

chapter, the High Level Design is analyzed. The object oriented analysis of

the solution is discussed.

C h a p t e r 5

HIGH LEVEL DESIGN (OBJECT ORIENTED ANALYSIS)

INTRODUCTION

In the previous User Interface Specification were discussed, together with the

various functions or options applicable. This chapter offers the analysis of the

high level design. This is the object oriented view of the problem. This chapter

describes various objects that are part of the solution at hand. The detailed

description of each object is analyzed and relationship between the object is

established.

DATA DICTIONARY OF EACH OBJECT REPRESENTATION

Object Description

PoC client This is the cell phone application. The PoC client uses

SIP to transmit the sessions request and floor request

to the PoC server. The client consist of user interface,

call control module, floor control module, SIP module,

contacts management, RTP module and alert

management.

User interface - consist of login page, registration page

and the main PoC interface.

Call control module – initiates calls through SIP VoIP

Floor control module uses the SIP to exchange the

floor control signals with PoC server.

SIP module – enables other modules to access SIP

communication services.

Alert – offers the multimedia services to the PoC

client.

Contacts management - used to retrieve the user’s

information from group and list management server.

PoC server The PoC server is an interface of communication

between two PoC clients. It handles the sessions

(through SIP) and relays/ directs them to their

destination. It handles the floor control which decides

who to grant the floor (permits to talk) at a certain

time. The PoC server works handy with the SIP

server. It also stores the information of all the

registered clients.

SIP server This server consists of Session Initiation Protocol. SIP

is used for initiation, termination of PoC sessions. It is

used for call control.

Group and List

management server

Stores the details of the groups and the list. It also

stores the presence information as well as the status

information. The presence uses the SIP sub protocol

called SIMPLE.

RTP module Real time protocol that enables real time

communication between the PoC Client and the PoC

server.

Table 3 : This table describes the various object of the solution.

USER INTERACTION DESIGN (USE CASE DIAGRAM)

This is the high level design of the from the users perspective. It shows the

functional activities that the user can perform. Figure 6 shows the Use Case

Diagram.

Figure 6: Use case diagram of the solution.

The use case diagram has two actors, the user and the mobile phone. The user

uses the mobile phone where the PoC application is installed. The user

interacts with the system through the interface. The basic high level functions

are – registration of new user, sending invites, receiving invites. From the

main interface the user can add new contacts, delete contacts, see who is

online (presence) amongst your buddies and see the availability information.

CLASS DIAGRAMS SHOWING THE NAME, ATTRIBUTES, AND METHODS OF

EACH CLASS

Figure 7 shows the floor control class. Its main responsibility is to control the

allocation of the floor. To obtain the floor the client sends the request to the

PoC server and waits for the feedback. The status of the floor is broadcasted to

all the parties by the PoC server. Figure 8 shows the detailed description of the

class diagrams.

Figure 7: Floor control class.

Figure 8: Class diagram depicting various classes of the problem solution.

THE RELATIONSHIP BETWEEN OBJECTS

Figure 9 shows the relationship between some of the object. The M represents

“Many” while the 1 represent “one” i.e. 1: M is one-to-many relationship. The

PoC client and the PoC server has M:1 relationship, which means that you can

have many PoC clients and only one server. The relationship between the

servers is 1:1.

Figure 9: The relationship between classes.

CLASS DIAGRAMS AND DATA DICTIONARY FOR THE INTERFACE DOMAIN

Table 4 and figure 10 shows the data dictionary and class diagrams of the

interface domain respectively.

Object Description

User interface GUI application of the PoC client

Register Allow first users to register for the

PoC services. The information is

stored in the PoC server.

Login Users log-in in order to use the

application. The post log-in invokes

the presence status.

Main window Displays the necessary information on

the screen i.e. presence and

availability status

Table 4 : Data dictionary of the interface of the application domain.

Figure 10: Class diagrams of the interface domain.

Figure 10: Class diagrams of the interface domain.

CLASS DIAGRAMS AND DATA DICTIONARY FOR THE APPLICATION DOMAIN

Figure 11 shows the class diagram for the application domain of the problem.

For the data dictionary of this domain refer to table 3.

Figure 11: Class diagrams of the solution’s application domain.

SUMMARY

In this chapter an analysis of the High Level Design was obtained. The various

classes involved and how they interact with each other were described as well

as the relationship between them. The problem solution was analyzed from an

object oriented view. In the next chapter, the classes discussed in this chapter

are analyzed further; pseudo codes of the solution are extracted from the

classes.

C h a p t e r 6

LOW LEVEL DESIGN (OBJECT ORIENTED DESIGN)

INTRODUCTION

In the previous chapter, object oriented analysis otherwise known as the high

level design of the solution was described in details. The possible classes of

the solution were modeled through class diagrams and the relationship

amongst them. This chapter takes the classes further by creating pseudo codes.

INNER DETAILS OF CLASS ATTRIBUTE (DATA TYPES)

The following table 5 shows the inner details of the classes with their

attributes. It is the description of the attributes with regards to the type of data

that they represent.

Class Attributes

PoC client int ip_address – stores the IP address of the client.

String user_name – stores the user name of the

person using the PoC client

PoC server int ip_address – stores the IP address of the server.

SIP server Int sip_address – stores the address of the SIP server.

Group and List

management server

String user_group - stores the names of the groups

currently registered.

Int ip_address - the IP address of the server

RTP module int destination _id – The IP address of the intended

receiver.

Call control/floor

control

int caller_id – The IP-address of the sender

int destination _id – The IP address of the intended

receiver.

Table 5 : A description of methods of each class.

INNER DETAILS OF CLASS METHODS (FUNCTIONS)

Class functions

PoC client public poc_client() – initializes all attributes.

PoC server public poc_server() – initializes all attributes.

public void relay_message () – this method relays the

audio message to the intended receiver.

SIP server public sip_server() – initializes all the necessary

attributes.

public void create_session() – this initiates the PoC

sessions.

 public void delete_session() – terminates the PoC

sessons.

Group and List public glms() – initializes all attributes.

management server public String set_group() – create a PoC buddy

group

User interface public user_inteface() – attribute initialization.

public void display() – this method displays all the

necessary information on the screen i.e. presence,

availability

public void log_in() – this method allows the user to

log in, only registered users can log in.

public void register() – enables the first time users to

register.

Contact management public contact_man() – initialization of attributes.

public void add_contact() – this method allows the

user to add new contacts on the buddy list.

public void delete_contact() - this method allows the

user to delete contacts from the buddy list.

public void view_contact() - this method enables the

user to view all contacts in the buddy list.

Alerts/multimedia

services

public alert_notification() – initializes all attributes.

public void ringtone() – this method plays a ringing

tone to alert the user (reciever) of incoming call.

public void ringback() – this method plays a tone

that alert the sender if the call is going through

Call control public call_control() - initializes all attributes.

public void init() – initializes a PoC session.

public void send_invite() – this method enables the

user to sent a invite to another PoC user.

public void invite_alert() – returns notification

feedback on an send invite.

public void call_cancelled() – cancels a call that is in

process (by the sender).

public void call_accepted() –alerts the sender if the

call is accepted call.

public void call_rejected() – alerts the sender of a if a

call is rejected.

public void reicieve_invite() – alert the user of the

incoming invite.

public void receive_alert() – plays a ringing tone to

notify a user of an

public void in_call_cancelled() – the call has been

cancelled by the receiver.

public void accept_call() – the call has been accepted

by the receiver.

public void reject_call() – call reject

public void call_failed() – returns a notification if a

call failed to establish.

 public void call_established() – the call established

successful, talk can take place.

public void disconnect() – connection lost.

Floor control public floor_control() – initializes all attributes.

public void floor_request() – this method request the

floor in order to make talk session.

public void floor_grant() – this method grants the

floor to the requested user.

public void floor_taken() – alerts the user that the

floor is in use by someone.

public void floor_deny() – returns an alert that the

floor request has been turned away (denied).

Public void floor_release

() – this method releases the floor after use

public void floor_free() – alerts the user that the floor

is free.

public void floor_wait() – waiting for the floor to be

free.

Table 6 : An inner details of class methods (functions).

STATE DIAGRAM OF THE FLOOR CONTROL

Table 6 and figure 11 shows the data dictionary and the state diagram of a

floor request control.

State Description

Initial state/

activation

A PoC call is activated; After the activation a floor

signal is send from the PoC server.

Request_pending A floor request has been sent to the PoC server. User

is waiting for the response.

Floor_free The floor is free and ready to be used.

Owner/Receiver The user is granted the floor

Reserved/ in_use The floor is been used by another user. Not available

Release_Pending floor request release has been sent to the PoC server.

User waiting for the response.

Table 7 : Data dictionary of the control.

Figure 12: State diagram of the floor control.

PSEUDO-CODE

PoC server

Class poc_server{

 String user_name;

 int ip_address;

 String password;

 method poc_server() {

 initialize user_name, password = NULL;

 ip_address = 0;

 while (true)

 get destination_address;

 relay_message(destination_address,message)

 method relay_message(int d_address, msg){

 }

 method void setUserName(String us){

 username = us;

 }

 method void setIPaddress(int ip){

 ip_address = ip;

 }

 method void setIPassword(int pas){

 password = pas;

 }

 method String getUserName(String us){

 return username;

 }

 method int getIPaddress(int ip){

 return ip_address;

 }

 method int getIPassword(int pas){

 return password;

 }

 }

}

PoC client

class poc_client extents poc_server (){

 super.poc_class();

 method poc_server(){

 initialize user_name, password = NULL;

 ip_address = 0;

 while (true)

 sip_server();

 call_control();

 floor_control();

 }

}

SIP server

class sip_server extends poc_server(){

 super.poc_server();

 method sip_server(){

 while (true)

 create_session();

 }

 method void create_session(){

 invoke SIP session initiation;

}

 method void terminate_session(){

 invoke SIP session termination;

 }

}

Call_control

class call_control{

 int caller_id;

 int destination_id;

 method call_control{

 while(true){

 switch(call){

 case 1 : initialize call

 call init();

 case 2 : send invite

 call send_invite();

 case 3 : invite alert

 call invite_alert(); //play the alerrt tone

 case 4 : call accepeted

 call call_accepted();

 case 5 : call rejected

 call call_reject();

 case 6 : receiving invites

 call ireceive_invite();

 case 7 : receive invites alert

 call receive_alert();

 case 8 : cancel incoming

 call in_call_cancel();

 case 9 : accepting call invites

 call accept_call();

 case 10 : rejecting call invites

 call reject_call();

 case 11 : failed call

 call call_failed();

 case 12 : establishement

 call call_established();

 case 13 : diconnection

 call call_disconnect();

 }

 method void call_init() {

 call sip;

 }

 method void send_invite(){

 call sip module to isssue a SIP invite;

 }

 method void invite_alert(){

 if call established

 play rinngback tone;

 }

 method void call_cancelled(){

 if cancel button is pressed

 call not established;

 }

 method void call_accepted(){

 if call is established and answered

 beging to transmit/ to talk;

 }

 method void call_rejected(){

 if user is not available for PTT sessions e.g. busy

 send reject alert to the caller;

 }

 method void receive_invite(){

 if you are available and some is callling you

 call recieve_alert; //play ringtone

 }

 method void receive_alert(){

 if there is an invite

 play ringtone;

 }

 method void in_call_cancelled(){

 if an invite is recieved and cancell is pressed

 call reject_call;

 }

 method void accept_call(){

 if ringing

 connection is made;

 }

 method void reject_call(){

 if busy

 call in_call_cancell;

 }

 method void call_failed(){

 if call is not established

 return call failed;

 }

 method void call_established(){

 if there is a sent alert

 waiting for answer

 }

 method void disconnect(){

 if there is disconnection

 return there is a disconnection

 }

 }

 }

}

Floor control

class floor_control extends call_control{

 int caller_id;

 int destination_id;

 method call_control{

 while(true){

 switch(call){

 case 1 : requesting a floor

 call floor_request();

 case 2 : the user granted the floor

 call floor_grant();

 case 3 : floor is in use

 call floor_taken();

 case 4 : floor request rejected

 call floor_deny();

 case 5 : floor is released, now available

 call floor_release();

 case 6 : floor is not in use

 call floor_free();

 case 7 : user waits for the floor which is inuse

 call floor_wait();

 }

 }

 }

 method void floor_request() {

 sends floor request to the PoC server through SIP

 }

 method void floor_grant() {

 invoke RTP module;

 user interface -> show user busy;

 multimedia->record

 }

 method void floor_taken() {

 call floordeny;

 }

 method void floor_deny() {

 PoC sends resevered message to the client;

 }

 method void floor_release(){

 PoC client sends floorRelease message to the PoC server via SIP

 }

 method void floor_free() {

 PoC server sends a floorRequest response to the PoC releasing client

 }

 method void floor_wait() {

 call_control(); // instructs the UI module show the status of the floor

 }

}

Class SIP Module

class sip_module extends sip_server{

 super.sip_server()

 method sip_module(){

 sip_address = 0;

 }

 method void init_session(){

 invokes SIP to initialize the connection;

 }

 method void term_session(){

 invokes the SIP to terminates a connecton;

 }

}

Status

class status extends SIMPLE{

 method status(){

 }

 method void presence(){

 invokes the SIMPLE

 }

 method void availability(){

 dislpays the availability status;

 }

}

RTP module

class rtp_module extends RTP(){

 method rtp_module(){}

 method void ringtone(){

 play ringtone;

 }

 method void ringback(){

 play ringback;

 }

}

C h a p t e r 7

IMPLEMENTATON

INTRODUCTION

The previous chapter gave an overview of how the actual implementation of

the project looks like. Various classes together with their pseudo codes were

discussed. The previous chapter holds the introductory keys to this chapter,

which are now detailed. In this chapter two methods of implementation are

discussed which are the cell phone implementation of Push-to-Talk (PoC) and

PC Push-to-Talk.

 SOFTWARE’S DEPLOYED

SIP server

Both implementations use the same SIP servers throughout. SIP server is the

server that relays the Real Time Protocol (RTP) voice sessions from one end

to the other. This project used two SIP severs for experimentation purpose in

order to test the feasibility of the system as well as the degree of compliance

between the server and either of the two approaches. We used Openser and

Asterisk SIP servers.

Openser was the ideal one due to its support for various communication

media. Apart from SIP, Jabber and other common mediums amongst the SIP

servers, it also supports instant messaging. The version improvement from

Openser to Kamailio also brought a lot of improvements. The advantage of

using Openeser/Kamailio is the fact that registration is on the client’s side.

However OPenser/Kamailio runs in the background which makes it difficult to

trace down bugs. On the other hand Asterisk operates much differently. The

registrations are configured on the server. During RTP session relay, IP

addresses of the participants are shown as well as the session process, so it

very vital in terms of debugging. The disadvantage of using it however is the

fact that during real time communication, the registration might take a little bit

longer as it will have to make use of scripts. Since the project is still on the

development stage we use Asterisk as our SIP server.

Cell phone Implementation

Symbian SDK – This is a software development kit for Symbian S60

applications. The SDK enables developers to build applications using Symbian

C++, Open C/C++, Java development and Web runtime [4]. It includes a

Symbian mobile phone emulator which is used for testing of applications

before being imported to the real mobile phone device.

Carbide C++ – This is the software development tool for developing

Symbian C++ applications. It is an integrated development environment (IDE)

which is based on Eclipse IDE. It enables developers to quickly and efficiently

create, Code, Test and deploy software for the Symbian operating system [5].

Nokia PC suite – It is an application programming interface (API) that create

an interface of connectivity between a Symbian phone and a PC.

PJSIP Symbian – Is an open source SIP stack protocol. It is very small as

compared to other SIP stacks but yet flexible with a high performance rate [6].

PJSIP is the only SIP stack based on Symbian platform. We implement Push-

to-Talk on the mobile phone using Symbian PJSIP as the basis for our

development. The reason being, PJSIP offers a lot of functionalities such as

presence, RTP sessions etc.

PC Push-to-Talk

Netbeans – This is a multi-lingual platform IDE for development.

 SIP-communicator – This is an open source SIP stack developed in java. It

was used as a basis for the PC implementation of the project. It was basically

used because of its simplicity and object oriented style. This allows us to

implement our Push-to-talk using some of their explicitly documented classes

and methods.

 HARDWARE’S DEPLOYED

Microphone – used for record the voice for the PC Push-to-Talk.

Speakers – used for sound output, also for PC Push-to-Talk

Mobile phone device (Nokia) – required for the cell phone application

CHALLENGES

Every project has to go through rough patches and ours was no exceptions.

There were a lot of technical obstacles encounter throughout the development

of the project. We had technical challenges through some configurations of

SIP server to gauge most suitable one for our project. However those were sort

of challenges were overcome.

The most daunting challenge which left us with no choice but to divert a bit

from the original architecture was the feasibility of the emulators. The project

is real time and as such the emulators do not support real time audio streaming.

Since the real mobile devices were not available at that time, the project was

then moved to PC. The other reason being that it is not easy to debug on the

mobile phone, if the application cannot be tested on the emulator before ported

on the mobile phone always raises doubting views as far as efficiency and time

is concerned. Nonetheless the project will be continued on the mobile phone

after the completion of the PC application.

 CODE DOCUMENTATION

The implementation of the project was done through modifying the SIP-

communicator source code as well as creating new methods in order to meet

the basic requirements. The source code given below show basic

functionalities of the project which are half duplex communication, floor

control and PTT button control. The rest of the code will be in a CD. We first

change the audio streaming from full duplex to half duplex and create a

method that will automatically put the streaming on hold. This is to allow the

users to control the transmission through a PTT button. All this is done the

SIP-Communicator’s “OperationSetBasicTelephonySipImp.java” under the

method “ProcessAck”. The second method is for the PTT button control

functionalities. This is done by modifying the SIP-Communicator’s

“HoldbuttonModel.java”, new methods are implemented inside such as

session termination. The code modified or created is clearly documented using

/**/ or //.

/**

 *This method initiates the audio streaming during a session.

 *It first find the call to be streamed, before the streaming we put it on hold, so

 *to be controlled by the PTT button.

 *The streaming then depends on the PTT/hold button

 *Normally the Sip-communicator is full duplex, so this is where we reduce

 * the duplex to half.

 *The audio session is is first initiated and put on hold immediately

 *

 * Updates the session description and sends the state of the corresponding

 * call participant to CONNECTED.

 *

 *@param serverTransaction the transaction that the Ack was received in.

 *@param ackRequest Request

 *input – call – to establish the session

 *output – audio streaming

 */

 private void processAck(ServerTransaction serverTransaction,

 Request ackRequest)

 {

 // find the call

 CallParticipantSipImpl participant

 = activeCallsRepository.findCallParticipant(

 serverTransaction.getDialog());

 if (participant == null)

 {

 // this is most probably the ack for a killed call - don't signal it

 logger.debug("didn't find an ack's call, returning");

 return;

 }

 ContentLengthHeader contentLength = ackRequest.getContentLength();

 if ((contentLength != null) && (contentLength.getContentLength() > 0))

 {

 participant.setSdpDescription(

 new String(ackRequest.getRawContent()));

 }

 // change status

 CallParticipantState participantState = participant.getState();

 if (!CallParticipantState.isOnHold(participantState))

 {

 if (CallParticipantState.CONNECTED.equals(participantState))

 {

 try

 {

 ((CallSipImpl) participant.getCall())

 .getMediaCallSession()

 .startStreamingAndProcessingMedia();

 }

 catch (MediaException ex)

 {

 logger.error(

 "Failed to start the streaming"

 + " and the processing of the media",

 ex);

 }

 }

 else

 participant.setState(CallParticipantState.CONNECTED);

 }

/*

 *This is the most important part of the project, this method put the audio

 * streaming which is defined above on hold.

 * The streaming is automatically put on hold immediately after initiation of

 * the session.

 *The status of the call is set to on hold locally.

 * The

 */

 if ((CallSipImpl) participant.getCall() != null) {

 //initiate a new instance of the call session

 OperationSetBasicTelephony telephony =

 (OperationSetBasicTelephony) ((CallSipImpl) participant.getCall()).

getProtocolProvider().getOperationSet(OperationSetBasicTelephony.class);

 //get the involved participants

 Iterator<CallParticipant> participants = ((CallSipImpl)

participant.getCall()).getCallParticipants();

 //checks if the call is on i.e the callee has responded

 while (participants.hasNext()) {

 //the involved participants

 //initiate a new call instance between the defined participants

 CallParticipant callParticipant = participants.next();

 try {

 //put the call onhold

 telephony.putOnHold(callParticipant);

 } catch (OperationFailedException ex) {

 // TODO Auto-generated method stub

 }

 }

 //set the status of the call to onhold locally

participant.setState(CallParticipantState.ON_HOLD_LOCALLY);

 }

 ////////////////

 }

/**

*This is where we define the on hold button which in this case serves as our

*PTT button.

* The button controls the streaming that was put onhold.

*Procedure - initially the call is onhold as defined previously

* - when the button is pressed, the connection is initiated and is

* half duplex

* -When the button is pressed for the second time, the half duplex

* connection closes.

* - and hence the connection is terminated.

*Since this is a button, all the execution methods are implemented inside the

*actionPeformed method,

*this method executes the action depending on the action perfomed on the

*mouse. This is done through

*java's MouseListener methods and executed by java's actionlistener.

* Initializes a new <tt>HoldButtonModel</tt> instance to represent

* the state of a specific <tt>CallParticipant</tt> as a toggle

* button.

*

* @param call- this is the input

* the <tt>Call</tt> whose state is to be

* represented as a toggle button.

*@output

*/

 public HoldButtonModel(Call call)

 {

 //initiate new button

 this.call = call;

 //passes whatever the mouse does to the actionlistener where the

execution takes place

 addActionListener(this);

 }

 public void actionPerformed(ActionEvent evt)

 {

 if (call != null)

 {

 //initiate a new instance of the call session

 OperationSetBasicTelephony telephony =

 (OperationSetBasicTelephony) call.getProtocolProvider()

 .getOperationSet(OperationSetBasicTelephony.class);

 //get the involved participants

 Iterator<CallParticipant> participants = call.getCallParticipants();

 //checks if the call is on

 while (participants.hasNext())

 {

 //initiate a new call instance between the defined participants

 CallParticipant callParticipant = participants.next();

 try

 {

 //check i the hold/PTT button is selected

 if (isSelected())

 //disconnect the call and terminate the session

 telephony.hangupCallParticipant(callParticipant);

 else

 //put the call off hold to allow the sstreaming and hence the half

duplex connection.

 telephony.putOffHold(callParticipant);

 }

 catch (OperationFailedException ex)

 {

 // TODO Auto-generated method stub

 }

 }

 }

 }

 }

 SUMMARY

In this chapter two approaches of implementing the project were discussed in

detailed together with their source code. The project was first implemented on

the mobile phone emulator using Pjsip as a SIP stack; however the emulators

do not support RTP audio streaming. This resulted in us implementing it on a

PC using SIP-Communicator as a SIP stack. The mobile development will

nonetheless be continued using real mobile phone devices. Asterisk SIP server

was used which relays the voice streams between two parties. The code

documentation given shows two basic functionalities, which are half-duplex

communication, PTT button functionalities with the rest of the code to be in a

CD.

APPENDICES

APPENDIX A

PROJECT PLAN TERM1

Meeting
dates &
times /Tasks

Comments

Mon 2
th

 Feb

15h00 (BANG)

Mon 9
th

 Feb

12h00

Mon 16
th

 Feb

10h00

Mon 23
th

 Feb

12h00

Mon 2
nd

 March

10h00

Mon9
th

 March

12h00

Mon 16
th

 March

10h00

Mon 30
th

March

Wed 1
st

 April

12h00

 meeting with (IM
Venter)

n/a meeting with (IM
Venter)

meeting with (IM Venter) meeting with (IM
Venter)

Presentation

Thesis
Document

Create document
using Honours
Project Guidelines
from the website as
well as Thesis doc
from Word

o Check Index
and add indexes

o Bibliography
– at least 5
entries.

o Ask Prof I M
Venter to read
abstract and
introduction

Finalise write-
up.

Let someone
proof read your

document!

Hand in final
document on
Monday (30

th

March) before
12h00

URD

Start write-up of
URD.

Continue with
URD write-up.
Interview
stakeholders.

 Complete URD

RAD

Start write-up of
RAD.

Write-up RAD

 Complete RAD

Literature
Survey

Familiarising
yourself with
your topic, and
how it's
implemented.

Read and
explore. literature
on your topic.

Add all literature
found to your
bibliography –
use the Harvard
Notation

Read and explore.
some more – use
Google Scholar..

Keep on reading

Presentation
/deliverable

Write one
paragraph that
describes what

Use thesis to
Prepare slides
for mock

Mock presentation

1
st
 April

Table 1A describes the aims of each term. The aim of term one is done, only

terms two, three and four still need be done.

Table 1A : planning for term 1.

you want to do,
and why you
want to do it

presentation Present

Website
Ask Frieslaar

intelligent.networkin
g@gmail.com

See previous
week!

Create
website

Put plan onto
website

Ask Frieslaar
about the server.

Add URD to
website

Add RAD to
website

Put
presentation on
website

APPENDIX B

PLANNING TERM 2

Tasks 7
th

 April 14
th

 April 21
st

 April 28
th

 April 17
th

 May 19
th

 May 2
th

 June

C
o
m

m
e
n
ts

Combined
meeting
@14h00
Separate
meeting@1
0h00

Separate
meeting
with Mr.
Norman

Combined
meeting

Separate
meeting with
Mr. Norman
Meet with R.
Harris from
Vodacom

Separate meeting with
supervisor

Combined meeting Separate
meeting with
supervisor

T
h
e
s
is

 D
o
c
u
m

e
n
t

Edit/
update
thesis –
implement
changes

Complete
editing.
Start with
the write
up of the
UIS

Start write
up of the
OOA &
complete
the UIS
write-up

Submit
updated
Thesis
document,
Project plan

 Complete write-up
of OOA.

Complete

write up.Hand

in comp-leted

document to

supervisor

OOD Start
thinking
about The
design

 Start with the
OOD

Submit initial OOD
to MN

Refine the Design

UIS Start with
User
Interface
Specificati
on

Complete
UIS

Read about
Python

Refine UIS Update changes to
UIS
&
If needed - update
changes to UIS

GUI &
protot
ype

Start with
the
prototype

Download
Ftp libaries

Request
Celtius
PoC demo

Program GUI/
prototype

Consult
M.s.c.students.

Program GUI/
prototype - busy

Finalise GUI/
prototype

P
re

v
io

u
s

p
ro

je
c
ts

Look at
previous
project

Look at
previous
projects

Work on
the
Symbian
FTP library

Vodacom
representative
about PTT

Speak to long

Table 2A : detailed planning for term 2

P
re

s
e
n
ta

ti
o
n

 Prepare slides for
mock presentation
on 26

th
 May

Mock
presentation
Update
presentation
for
 The 27

th
May

2009

Web-
site

Update
web site

 Check and update Put new plan,
thesis &
presentation
on web site
26 May

APPENDIX C

PLANNING TERM 3

Tasks 14
th

 July 21
th

 July
28

th

July
4

rd
 Aug 11

th
 Aug 18

th
 Aug

25
th

Aug

28
th

 August –
6

th
 Sept

8
th

 Sept

Thesis
Document

Finalise the
editing of the
documentation
- & editing

Update
any
changes
to the
design –
e.g.
objects

Make changes to object’s pseudo code as you develop the software,
document all changes etc. in the code & start on the User’s guide

(User’s Guide a deliverable for the next term only!)

Finalise
Documentation
and hand in on
the 7

th

Platform
SIP Stack

Configure
Pjsip symbian

Connect
two pjsip
clients
through
openser
Speak to
masters
students

Try
Asterisk
Cell
phones
needed

Sort
emulators
problem
with sound
streaming

Try desktop
implementation
with SIP
communicator/
try android
emulator

Start working
on sip
communicator

Replace
screenshots
with
screenshots
of the current
program (it
will have
changed)

Configure
SIP servers

Finish the
Openser
Configuration

Try to connect the
clients through the
SIP server. Speak to
master students for
help

 Configure
Asterisk

Programming
task

Start coding
on carbide
c++

Symbian
Pjsip

 java Implement
PTT using
SIP
communicator

Finalise
programming
& testing

Testing and
refining with
a basic data
set

 Test the
connection

 Peer to
peer
connection
between 2
clients
made

No solution
with sound
streaming on
the emulators.

Tried android
emulator. Still

no solution

Presentation
Prepare
slides

Prepare for
presentation

Mock-up
Presentation

Website Update NB
Update
NB

 Update NB Update NB

Table 3A : detailed planning for term 3

BIBLIOGRAPHY

[1]. http://www.cellular-news.com/story/15292.php (March 2009).
[2]. R. Thomas, “Parents Guide to MXit”, 2006.

http://www.radioislam.co.za/Library/Family/mxit-ParentsGuide2MXit.pdf

[3]. R. Koivisto, “Towards the Next Wave of Mobile Communications: Push-to-

Talk over a Cellular: Still Searching the Flow of Success” In Proceedings of

the Research Seminar on Telecommunications Business, TML-C19, pp 45-96,

2005.

[4].http://www.forum.nokia.com/Tools_Docs_and_Code/Tools/Platforms/S60

_Platform_SDKs/, September 2009.

[5].http://www.forum.nokia.com/Tools_Docs_and_Code/Tools/IDEs/Carbide.

c++, September 2009.

[6]. http://www.pjsip.org, September 2009.

http://www.cellular-news.com/story/15292.php
http://www.radioislam.co.za/Library/Family/mxit-ParentsGuide2MXit.pdf
http://www.pjsip.org/

INDEX

D

DCCT · vi,x

N

NetBeans IDE · vi

M

MMS · vi

S

SMS · vi

