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Abstract

An attendance register to record students’ presence or participation in a lec-

ture, tutorial or practical is usually done manually. This traditional atten-

dance record system, where students have fill in their details on paper, is

inefficient and students can cheat by getting their peers to sign on their behalf

when they are absent for a lecture. This paper introduces a practical sys-

tem for recording attendance automatically using facial recognition. The first

part of the system is facial detection, which is achieved by using the Viola-

Jones algorithm. The second part of the system, face recognition, is achieved

through feature extraction and classification trained on the cropped Yale face

database. A model is built by splitting 2452 samples from 42 people by a ratio

of 3:1 for training and testing sets. Eigen faces are extracted using principal

component analysis and are then fed into a support vector machine for train-

ing. The third part of the system uses the model to predict the student who

enters the class and then records his/her attendance in a spreadsheet.
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Chapter 1

Background

An attendance register is an official list of people who are enrolled in a course

and who are expected to be present at an institution such as a school, univer-

sity or college. An attendance register is a tool used to record students’ pres-

ence or participation in a lecture, tutorial or practical. The register contains a

list of students’ names and their student number. In each lecture, the register

circulates in the class and students are required to sign next to their name

to mark their presence. Once all students present have signed next to their

name, the register is returned to the lecturer who then inputs the attendance

into a database. There is evidence that there is a significant correlation be-

tween students’ attendances and their academic performance (Newman-Ford

et al., 2008). Othman et al., ( 2009), claim that those students who have poor

attendance records tend to present poor retention.

Figure 1.1: Example of attendance register

1
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1.1 Problem Statement

Students’ attendance is recorded by most universities and and is required

by law in state schools, and each faculty has to maintain proper records for

attendance. The traditional attendance record system, where students have

to manually fill in their details in Figure 1.1, is inefficient and requires more

time to do analysis on a student’s attendance. Many students are helping

their peers by signing their attendance when they are absent for a lecture. In

many cases students come to class late which results in the register not being

circulated throughout the entire class. If the attendance register gets lost or

destroyed, the lecturer has to print a new attendance register and recirculate

it. This is not ideal because previously absent students have a chance to mark

their presence on the new register. Time is expended on completing manual

attendance registers and students could miss key aspects of a lecture while

filling in their details. Manual attendance registers for large classes do not

work because once the register in Figure 1.1 is full, students have to draw

extra lines, which is often untidy, to create space to fill in their details.

1.2 Proposed Solution

All the problems mentioned above can be solved by creating an automated

attendance register system that uses facial recognition. A camera will be

mounted at the entrance of a classroom so that when a student enters, his/her

image is captured by the camera. The Viola-Jones algorithm is applied to de-

tect the face which is then resized and enhanced by using linear stretch con-

trast enhancement. Finally, a machine learning technique called PCA/LDA

is used to recognize the faces. Once the face is recognized, attendance will

automatically be updated in a spreadsheet along with his/her name, date

and time. The main goal is to create a system that is practical, reliable and

eliminates fraudulent signatures, disturbance and time loss in traditional at-

tendance systems. A further goal is to do analysis on a student’s attendance

and the impact it has on their performance.
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1.3 Assumptions

To ensure optimal results, the following assumptions have been made:

• Lectures will be during the day, in a well-lit classroom.

• The camera will be placed at the entrance of a classroom.

• Students will not get haircuts or change how their face looks.

• Students will look directly into the camera so that it can capture their

face.

• There will only be one entrance to the classroom.
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Related work

2.0.1 Class Room Attendance system using facial recognition system—

Abhishek Jha

Providing an automated attendance register system that resolves issues men-

tioned in the problem statement. The idea is to have a camera at the entrance

of a class recording a video of all students that attend a certain lecture, labo-

ratory or exam and compiling an attendance register. The main objective of

this system is to provide a system that is practical, reliable and eliminates dis-

turbance and time loss in traditional attendance systems. A further objective

is to present a system that can evaluate students’ performances depending on

their attendance rate.

Implementation and Technologies used:

Techniques such as color-based detection and Principle Component Analysis

(PCA) for face detection and for feature extraction, PCA and Linear Discrimi-

nate Analysis (LDA). For detection, colour based technique was implemented,

which depends on the detection of the human skin color with all its different

variations in the image. The skin area of the image is then segmented and

passed to the recognition process. For recognition, PCA technique has been

implemented which is a statistical approach that deals with pure mathemat-

ical matrices not image processing like the colour-based technique used for

detection. PCA can also be used for detection (Jha, 2007).

2.0.2 Automated Attendance Management System Based On Face

Recognition Algorithms—Chintalapati and Raghunadh

When a person enters the classroom his/her image is captured by a camera at

the entrance. The face region is then extracted and pre-processed for further

4
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processing. When the student’s face is recognized it is fed to post-processing.

Implementation and Technologies used:

A) Image Capture—the camera is mounted at the entrance of the lecture

hall in order to capture a frontal image of a student entering the room.

The image size is preferred to be the size of 640 × 480 to avoid back-

end resizing which can result in poor performance. (Chintalapati and

Raghunadh, 2013)

B) Face Detection—the Viola-Jones algorithm was used as it has a high

decision rate and is fast and robust. It makes use of the integral im-

age and AdaBoost learning algorithm as classifier. Chintalapati and

Raghunadh observed that this algorithm gives better results in different

lighting conditions and angles.

C) Pre-Processing—histogram equalization is used on the extracted face

image and is resized to 100×100. This method improves the contrast of

the images, making it clearer.

D) Database Development—images of individuals were taken at different

angles, expressions and lighting conditions. A database of 80 individuals

with 20 images of each was collected for the project which was stored in

the database.

E) Feature Extraction and Classification—principal component analysis (PCA)

was used to represent facial images using eigen faces. The formula

X = WY + µ was used to represent an image mathematically. X is

the vector, Y is the vector of eigen faces, W is the feature vector and µ

is the average face vector.

F) Post Processing—after the students’ faces are recognized, their names

are updated in an excel spreadsheet.
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2.0.3 Development of a Student Attendance Management System

Using RFID and Face Recognition: A Review—Patel and

Priya

A CCTV camera which is fixed to the entry point of a classroom captures the

image of a person and checks the observed image with the face database using

an android enhanced smartphone. It is typically used for marking attendance

for students and people who are strange to the environment, i.e., unauthorized

persons.

Implementation and technologies used: The model is developed with

the help of OpenCV library. Viola-Jones algorithm is algorithm is used for

detecting human faces which is then resized to the required size. The resized

face is then further processed using linear contrast enhancement. PCA/LDA

is used to recognized the image. When the recognition is done, attendance

will be automatically updated on a spreadsheet with his/her name, time and

date. An HTML file is then automatically updated by their system so that

a remote authenticated user can access the attendance file (Patel and Priya,

2014).

2.0.4 Real Time Face Recognition Using AdaBoost Improved Fast

PCA Algorithm–Kumar et al.

Detect real time human faces using AdaBoost with Haar cascade and a simple

fast PCA and LDA is used to recognize the faces detected. The matched face

is then used to mark attendance in the laboratory. This biometric system is

a real-time attendance system based on human face recognition with a simple

and fast algorithm and gaining a high accuracy rate (Kumar et al., 2011).

Implementation and Technologies used: An input image is taken through

a web camera continuously till the system is shutdown. The image is then

cropped by a face detection module which saves the facial information in

JPEG format of 100 × 100 coloured matrix size with three layers, i.e., red,

green and blue.

Face Detection:
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A opencv1.sln: This is a solution file which calls all other files. This .sln

is created whenever we create a web application or any application in

MS Visual Studio.net. This file provides the editing facility in the code.

B prog1.cpp: It is the main program file in the face detector module. It

detects the face and crops the face image and saves in the current folder

in which it is.

C haarcascadefrontalfacealttree.xml: It is a cascade file in XML used

to obtain Haar cascade for the frontal face in the image. It is used in

the OpenCV library.

D StudentAttendence.xls: It records the attendance of the detected face

according to the system time in excel sheet.

E StudentAttendence.doc: It is same as the above file; the only difference

is that it saves the records in document format which can be easily

printed for the detailed information.

Face Recognition:

A example.m: It is the first page to be shown to the user. It calls the other

files in this module. It takes input training dataset and also inputs the

test dataset.

B CreateDatabase.m: This module is in Matlab used to create database

for the face images in the training dataset in a sequence of increasing

numbers as the face images in the dataset are in number format.

C EigenfaceCore.m: This module in the face recognition stage calculates

the eigen face value using PCA and then applying the LDA algorithm

on the result of PCA.

D facerec.m: This creates graphical interface in Matlab for training and

testing the database.

E Recognition.m: This function compares two faces by projecting the

images into face space and % measuring the Euclidean distance between

them.
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F facerec.exe: This is the executable file created to linked the Matlab

files with MS VS .NET 2008. It works in same way as the Matlab files

does.



Chapter 3

Image Processing Techniques

3.1 Introduction

This chapter looks at the various image processing techniques used to

extract features of the face to create a classifier. OpenCV is a computer

vision and machine learning library which uses the Viola-Jones algorithm

to detect the location of faces in an image. Using the location, the face

is extracted and gray scaled in order to extract features of the face. The

gray-scaled image is then fed into a support vector machine to train and

to create a classifier to recognize the face of a student.

3.2 Viola-Jones Algorithm

3.2.1 Integral Image

The first step is to take an input image and convert it into an integral

image. This can be achieved by making each pixel in the image equal

to the entire sum of all the pixels above and to the left of the concerned

pixel (Jensen, 2008). Figure 3.1 demonstrates this. The integral image

Figure 3.1: Integral image

9
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allows for the calculation of the sum of all pixels inside the given rect-

angle using only four values. These values are the pixels in the integral

image that coincide with the corners of the rectangle in the input image.

Figure 3.2 demonstrates this. Rectangles B and C include the rectangle

Figure 3.2: Sum calculation

A, therefore the sum of A should be added to the calculation as shown

in Figure 3.2.

3.2.2 Haar Features

Since the sum of pixels within rectangles of arbitrary size can be cal-

culated in constant time, a given sub window can be analysed using

features consisting of two or more rectangles (Jensen, 2008). These fea-

tures are called Haar features and there are different types as shown in

Figure 3.3.

Figure 3.3: Five Haar-like patterns

Figure 3.4: Haar-like features of the face

The size and position of a pattern’s support can vary provided its black

and white rectangles have the same dimension, border each other and
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keep their relative positions. Thanks to this constraint, the number of

features one can draw from an image is manageable: a 24×24 image,

for instance, has 43200, 27600, 43200, 27600 and 20736 features of cat-

egory (a), (b), (c), (d) and (e) in Figure 3.3 respectively, hence 162336

features in all. These features hold the information to characterize the

face (Wang, 2014).

3.2.3 AdaBoost Algorithm

Among the 162336 features as stated above, many are expected to give

almost consistently high values when positioned over a face. In order to

find these features Viola-Jones uses a modified version of the AdaBoost

algorithm developed by Freund and Schapire in 1996 (Wang, 2014).

AdaBoost is a machine learning boosting algorithm that constructs a

strong classifier through a weighted combination of weak classifiers. A

weak classifier classifies correctly in slightly more than half the cases.

The AdaBoost algorithm reduces a large feature set down to a smaller

set of important features. A mathematical representation of a weak

classifier is one where

h(x, f, p, θ) =

 1 if pf(x) > pθ,

0 otherwise,

where x is a 24 × 24 pixel sub-window, f is the applied feature, p the

polarity and θ the threshold that decides whether x should be classified

as a face or a non-face (Jensen, 2008).

3.2.4 Cascaded classifier

The cascaded classifier consists of many stages, each containing a strong

classifier. These stages determine whether a given sub-window is defi-

nitely not a face or maybe a face. When a sub-window is classified to

be a non-face by a given stage, it is discarded. If it is classified as a

maybe-face it is passed on to the next stage in the cascade. The more

stages a given sub-window passes, the higher the chance the sub-window
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Given a set of n training examples

{(x1, y1), (x2, y2), . . . , (xn, yn)},
where each xi with i ∈ [1..n] is an input vector of the training features and labelled
with yi ∈ {0, 1}. There are l positive and m negative examples.

(a) Initialize the weights of every sample, w1,i =

{
1
2l if yi = 0,
1
2m otherwise.

(b) For each weak classifier t = 1, . . . , T

i. Normalize the weights to probabilities, wt,i ← wt,i∑n
j=1 wt,i

.

ii. Select the best weak classifier with respect to the weighted error

εt = min
f,p,θ

∑
i

wt,i|h(xi, f, p, θ)− yi|.

iii. Define ht(x) = h(x, ft, pt, θt), where Ft, pt, and θt are the minimizers of
εi.

iv. Update the weights wt+1,i = wt,iβ
1−ε
t , where βt = εi

1−εi and ei = 0 if
example xi is classified correctly, and ei = 1 otherwise.

v. The final strong classifier is

C(x) =

{
1 if

∑T
t=1 αtht(x) ≥ 1

2

∑T
t=1 αt,

0 otherwise,

where αt = log 1
βt
.

Figure 3.5: Pseudo code for the AdaBoost algorithm

actually contains a face. Below is an illustration of the concept (Bishop,

2016).

Figure 3.6: Cascade Classifier

3.3 Pre-Processing

3.3.1 RGB to Grayscale

To make image processing easier, the RGB colour output from the cam-

era is converted to a grayscale image. This reduces the number of colour

channels to a single channel—gray scale is represented using one-pixel
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value compared to RGBs three. RGB is converted to chrominance, its

colour and luminance, its intensity at each pixel. Grayscale is repre-

sented using each pixel’s luminance value and is calculated as the sum

of each RGB colour multiplied by a weight and is calculated by

Y = 0.2126R + 0.7152G+ 0.0722B

where R, G and B are values from 0 to 255 (Jensen, 2008).

3.3.2 Re-sizing

As discussed in the previous section, re-sizing the image scales down

the number of pixels in an image which results in a smaller feature set.

Re-sizing the image also ensures uniformity in our feature set (Bishop,

2016).
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Implementation

4.1 Introduction

This chapter looks at high-level and low-level implementation of the au-

tomated attendance register system. The high-level view in Section 4.2

provides a brief outline of the processes followed during the implemen-

tation of the system, while the low-level view in Section 4.3 goes into

more detail about the implementation of the system.

4.2 High Level Implementation

This section gives an overview of the various stages that the system

follows. The system consists of seven stages, namely, capture frames,

detect face, capture face, extract features, train machine learning algo-

rithm, recognize face and record attendance. A visual representation of

these stages can be seen in Figure 4.1.

Figure 4.1: High Level Implementation

14



15

• Capture Frames—A Logitec camera captures a continuous stream

of video input which is displayed on the screen.

• Detect Face—A single frame is captured in order to check if there

is a face present by using a face detection algorithm. Once a face

is detected, a rectangle is drawn around it.

• Capture Face—Once the face is detected, it needs to be captured

and stored in order to extract features for training in the next

stage. The lecturer will take 15–25 images of each student in the

classroom.

• Extract Features—Each face captured has a unique set of fea-

tures that can be used to identify a student. Unique features are

extracted using eigen faces so that the computer can understand

and process these features. The feature extraction is applied to

the stored facial image captured in the previous step (Turk and

Pentland, 1991).

• Training—Machine learning builds algorithms that can receive in-

put data and use statistical analysis to predict an output while

updating outputs as new data becomes available. By training the

system using the extracted features, it will have the ability to make

predictions that is explained in the next stage (Domingos, 2012).

• Recognize Face—A model is built based on the trained features

that is used to predict and recognize a face (Domingos, 2012).

• Record Attendance—Once the face is recognized, attendance is

recorded in a spreadsheet.



16

4.3 Low-level Implementation

Figures 4.2 and 4.3 contain a detailed overview of the low-level imple-

mentation of the system. The various stages are explained in this section.

Figure 4.2: Low-level implementation

Figure 4.3: Low-level implementation continued

4.3.1 Capture Frame

OpenCv, which is an open source computer vision library, is used to

capture a continuous stream of images from the webcam and a live video

feed will appear on the screen as shown in Stage 1 of Figure 4.2.

4.3.2 Detect Face

As explained in Section 3.2, the Viola-Jones algorithm is applied to

detect the face and a rectangular box is drawn around the facial region

as shown in Figure 4.2.
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4.3.3 Capture Face

Once the face is detected, the user enters the student’s name, surname,

student number and captures 15–25 images by pressing “p” on the key-

board. A separate folder is created to store all the images of each indi-

vidual student as shown in the third stage of Figure 4.2.

4.3.4 Extract Features

Eigen Features using eigen vectors and PCA will be extracted from the

folders created where the images are stored. These features are extracted

so that the computer can understand and process them. An example of

these faces can be seen in Figure 4.3.

4.3.4.1 Eigen Faces

Eigen faces is an appearance-based approach to face recognition that

seeks to capture the variation in a collection of face images and use

this information to encode and compare images of individual faces in a

holistic. Eigen faces are the principal components of a distribution of

faces, or equivalently, the eigen vectors of the covariance matrix of the

set of face images, where an image with N pixels is considered a point (or

vector) in N -dimensional space. The figure below is an example of how

PCA is used to extract the eigen vectors of a face (Turk and Pentland,

1991).

Figure 4.4: PCA example to extract eigen vectors
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4.3.5 Train Machine Learning Algorithm

The eigen faces may be considered as a set of features which charac-

terize the global variation among face images. Then each face image is

approximated using a subset of the eigen faces, those associated with

the largest eigenvalues. These features account for the most variance in

the training set (Domingos, 2012).

4.3.5.1 Support Vector Machine

A support vector machine (SVM) is a supervised machine learning algo-

rithm that can be employed for both classification and regression pur-

poses. This technique was used in this system because it has been proven

to be accurate with face and facial action detection. The kernel used for

training is the radial basis function (RBF). Support vectors are those

data points nearest to the separating hyperplane, the points of a data

set that, if removed, would alter the position of the dividing hyperplane.

Because of this, they can be considered the critical elements of a data

set. A hyperplane is a surface that linearly separates and classifies a set

of data as seen in Figure 4.5. When new testing data is added, whatever

side of the hyperplane it lands will decide the class that we assign to

it. It is important to choose a hyperplane with the greatest possible

margin between the hyperplane and any point within the training set,

giving a greater chance for new data to be classified correctly as seen in

Figure 4.6 (Noble, 2006).

Figure 4.5: Data plane dividing two data sets
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Figure 4.6: Greatest possible margin

4.3.6 Record Attendance

When a student walks into a class and their face is recognized, the name,

surname, student number, date and time of entry is recorded in a CSV

file which can be opened in a spreadsheet or text editor.



Chapter 5

Testing and Optimization

5.1 Introduction

This chapter covers the optimization of the system to obtain greater

accuracy and efficiency. This chapter also discusses the results from the

training and testing the system.

5.2 Optimization

5.2.1 Student Verification

Attendance is only recorded when the system recognizes the same stu-

dent for five continuous frames. This helps the system to avoid incor-

rectly recognizing and recording students attendance. For example, if a

student is recognized as “John” for two frames and in the third frame

he is incorrectly recognized as “Smith” the system will not record his

attendance. If the student is recognized as “John” for five continuous

frames, the system confirms it has correctly predicted the student and

attendance is recorded.

5.2.2 Handling Unknown Faces

If an unknown student enters a classroom the system would incorrectly

predict the student as one of the students in the data set. This is because

a SVM always outputs a student with the highest prediction accuracy.

After running a few tests, it was found that the “forced” prediction

accuracy of an unknown student was low and a threshold had to be

determined so that when the prediction of a student is below a certain

20
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accuracy the system records the student as unknown. How this threshold

was determined is discussed in Sections 5.2.2.1 and 5.2.2.2.

5.2.2.1 Using probabilities of known and unknown faces to

determine a threshold

A subset of 469 samples of unknown faces from the Yale data set were fed

into the system and the probabilities of their “forced” prediction were

documented and graphed in Figure 5.1. It was found that majority of

the forced probabilities of the unknown faces were below 50% as shown in

Figure 5.1. This result indicates what the value of the threshold should

be.

Figure 5.1: Forced probabilities of unknown faces
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A subset of 2471 samples of known faces from the Yale data set were

fed into the system and their prediction probabilities were graphed in

Figure 5.2. It was found that majority of the probabilities were above

50% as shown in Figure 5.2. These results, along with the results in

Figure 5.1 confirmed that the rejection threshold should be between 0.4

and 0.5.

Figure 5.2: Probabilities of known faces
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5.2.2.2 Calculating the F1 score to determine a threshold

The F1 score is the harmonic average of the precision and recall. The

F1 score reaches its best value at 1, which indicates perfect precision

and recall and worst at 0. Table 5.1 shows formulae to calculate and

evaluate the F1 score of a SVM model.

Table 5.1: Calculating the F1-Score
Evaluating SVM model

Term Formula Description
Type 1 Error FP False Positive
Type 2 Error TP True Positive

Recall Recall = TP
TP+FN

True Positive Rate

Precision Precision = TP
TP+FP

Positive Predictive Value

F1-Score F1 = 2×Recall×Precision
Recall+Precision

Evaluates accuracy of
prediction

Using the formulae in Table 5.1, the F1-scores were calculated for dif-

ferent thresholds ranging from 0.05–0.95 in steps of 0.05. As seen in

Figure 5.3, the best F1-Score of 0.879, lies between thresholds 0.4–0.45.

This range confirmed that the results from Figure 5.1 and 5.2 are correct

and corresponds to the threshold with the highest F1-Score in Figure 5.3.

With these results, it was decided that if the probability of a student

entering the classroom is lower than 0.45, the system should classify that

student as unknown.
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Figure 5.3: F1-Score Calculations

5.3 Testing

5.3.1 SVM Testing Results Using Yale Data Set

The Yale data set consists of 42 subjects each containing 65 face images

taken at various angles and lighting. 75% of the face samples per subject

were used for training and 25% were used for testing. This yielded a

test recognition rate of 92.1630% and a test error rate of 7.8370%. The

prediction took 0.0009 seconds per sample on average.

5.3.2 Accuracy vs Class Size

Since classes will not always be the same size, the effect of class size

had to be tested for its effect on the prediction accuracy of the model.

Class sizes were tested ranging from 5–42 subjects in steps of 2. It was

expected that as the class size increased the the accuracy would decrease.

Although this was the general trend, the difference in accuracys were

minute as seen in Figure 5.4.
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Figure 5.4: Accuracy vs Class Size

5.3.3 Accuracy tests for known and unknown subjects with

threshold applied

Table 5.2: Accuracy tests for known and unknown people
Accuracy tests for known and unknown people

Question Result Total No.
Subjects

How many of the registered, known
people were above the threshold and
correctly predicted?

2287 2471

Of the samples of known people passed
in, how many were either below the
threshold and incorrectly predicted?

184 2471

Of the unknown, unregistered people,
how many were incorrectly above the
threshold?

48 469

Of the unknown people, how many
were correctly below the threshold?

421 469

5.3.4 Duration of pause to record attendance successfully

As described in Section 5.2.1, attendance will only be recorded in a

spreadsheet if the system recognizes the same student for five contin-

uous frames. A slight pause in front of the camera is needed for this
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verification process to take place. On timing five different subjects on

how long the system took to record their attendance it was found that

the average duration of the pause was 3.009 seconds and it was decided

that the student will be required to pause for at least three seconds for

their attendance to be recorded. The results are set out in Table 5.3.

Table 5.3: Duration of pause
Duration of pause

Subjects Time in seconds
Subject 1 2.83
Subject 2 3.24
Subject 3 3.52
Subject 4 2.89
Subject 5 2.56
Average 3.009



Appendix A

User Manual

A.1 Introduction

This chapter discusses usability and system requirements needed to run the

Automated Attendance Register system. Figures A.1 to A.4 demonstrates

how the system works.

Figure A.1 is the main menu and consists of two buttons: ‘Train Face’—

which trains a new students face and ‘Record Attendance’—which records

attendance and creates a register.

Figure A.1: Main Menu

When ‘Train Face’ is clicked the system takes the user to Figure A.2, prompt-

ing the user to enter the student number, name and surname of the student.

When the ‘save’ button is clicked the system takes the user to figure A.3. The

‘back’ button takes the user back to the main menu.

Figure A.2: Train Face

27
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As seen in Figure A.3, a live video feed appears prompting the user to

press the letter ‘p’ on the keyboard to take a picture or ‘q’ to save and quit.

The user is required to take 15–25 different face images at different angles

and lighting conditions. The window to the right of the live video stream is

the cropped, gray scaled image that will be captured and saved to a directory

which can be found in /face profiles/〈StudentNumber Name Surname〉.
When ‘q’is pressed the system returns to the main menu.

Figure A.3: Taking Pictures

When ‘Train Face’ is clicked the system takes the user to a live video feed as

seen in Figure A.4. When the student enters the class, a five second pause is

required so that the system can correctly capture and predict the face. The

predicted student’s details are displayed on top of the rectangle of the detected

face. When attendance is recorded successfully, a pop up window will appear

notifying the user. When the ‘OK’ button is clicked, the next student can

step into the frame and their attendance can be recorded. When ‘ESC’ or

‘q’ is pressed, the system closes and a register is created named ‘Register.csv’

which can be found in /scripts/Register.csv.
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Figure A.4: Record Attendance

A.1.1 System Requirements

• Python 2.7

• OpenCV

• HD WebCam

• Scikit-Image

• scikit-learn

• sklearn

• svm

• tkinter

• matplotlib

• pip

• Windows 7 x86

• Note: PyCharm on windows makes these libraries easier to install.
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A.1.2 Instructions

Download ‘Automated Attendance Register.zip’ from ‘cs.uwc.ac.za/∼iwesso’

under ‘Term 4’. Unzip the folder and ensure all the above libraries are installed

by typing ‘python -m pip list’. Open CMD as administrator and navigate to

the folder that contains ‘frontEnd.py’. In the terminal, type ‘python fron-

tEnd.py’ to run the system. The main menu in Figure A.1 should appear.

A.1.3 Contact Details

For questions, feedback or advice feel free to send me an email on 3437389@myuwc.ac.za.



Appendix B

Source Code

B.1 Introduction

The source code for implementing the Automated Attendance Register system

is found in this chapter.

B.1.1 Utilities

1

2 import cv2

3 import numpy as np

4 from s c ipy import ndimage

5 import os

6 import errno

7 import sys

8 import l o gg ing

9 import s h u t i l

10

11

12 #

##############################################################################

13 # Used For Fac ia l Tracking and Traning in OpenCV

14

15 def r e a d i m a g e s f r o m s i n g l e f a c e p r o f i l e ( f a c e p r o f i l e ,

f a c e p r o f i l e n a m e i n d e x , dim = (50 , 50) ) :

16 ”””

17 Reads a l l the images from one s p e c i f i e d face p r o f i l e i n t o

ndarrays

18

19 Parameters

20 −−−−−−−−−−
21 f a c e p r o f i l e : s t r i n g

31
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22 The d i r e c t o r y path o f a s p e c i f i e d face p r o f i l e

23

24 f a c e p r o f i l e name ind e x : i n t

25 The name corresponding to the face p r o f i l e i s encoded in

i t s index

26

27 dim : t u p l e = ( int , i n t )

28 The new dimensions o f the images to r e s i z e to

29

30 Returns

31 −−−−−−−
32 X data : numpy array , shape = (

numbe r o f f a c e s i n on e f a c e p r o f i l e , f a c e p i x e l w i d t h ∗
f a c e p i x e l h e i g h t )

33 A face data array conta ins the face image p i x e l rgb va l u e s

o f a l l the images in the s p e c i f i e d face p r o f i l e

34

35 Y data : numpy array , shape = (

numbe r o f imag e s i n f a c e p r o f i l e s , 1)

36 A f a c e p r o f i l e i n d e x data array conta ins the index o f the

face p r o f i l e name o f the s p e c i f i e d face p r o f i l e

d i r e c t o r y

37

38 ”””

39 X data = np . array ( [ ] )

40 index = 0

41 for t h e f i l e in os . l i s t d i r ( f a c e p r o f i l e ) :

42 f i l e p a t h = os . path . j o i n ( f a c e p r o f i l e , t h e f i l e )

43 i f f i l e p a t h . endswith ( ” . png” ) or f i l e p a t h . endswith ( ” . jpg ”

) or f i l e p a t h . endswith ( ” . jpeg ” ) or f i l e p a t h . endswith

( ” . pgm” ) :

44 img = cv2 . imread ( f i l e p a t h , 0)

45 img = cv2 . r e s i z e ( img , dim , i n t e r p o l a t i o n = cv2 .

INTER AREA)

46 img data = img . r a v e l ( )

47 X data = img data i f not X data . shape [ 0 ] else np .

vstack ( ( X data , img data ) )

48 index += 1

49

50 i f index == 0 :

51 s h u t i l . rmtree ( f a c e p r o f i l e )
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52 l ogg ing . e r r o r ( ”\nThere e x i s t s f a c e p r o f i l e s without images

” )

53

54 Y data = np . empty ( index , dtype = int )

55 Y data . f i l l ( f a c e p r o f i l e n a m e i n d e x )

56 return X data , Y data

57

58 def d e l e t e e m p t y p r o f i l e ( f a c e p r o f i l e d i r e c t o r y ) :

59 ”””

60 De l e t e s empty face p r o f i l e s in face p r o f i l e d i r e c t o r y and l o g s

error i f f a ce p r o f i l e s conta in too l i t t l e images

61

62 Parameters

63 −−−−−−−−−−
64 f a c e p r o f i l e d i r e c t o r y : s t r i n g

65 The d i r e c t o r y path o f the s p e c i f i e d face p r o f i l e d i r e c t o r y

66

67 ”””

68 for f a c e p r o f i l e in os . l i s t d i r ( f a c e p r o f i l e d i r e c t o r y ) :

69 i f ” . ” not in str ( f a c e p r o f i l e ) :

70 f a c e p r o f i l e = os . path . j o i n ( f a c e p r o f i l e d i r e c t o r y ,

f a c e p r o f i l e )

71 index = 0

72 for t h e f i l e in os . l i s t d i r ( f a c e p r o f i l e ) :

73 f i l e p a t h = os . path . j o i n ( f a c e p r o f i l e , t h e f i l e )

74 i f f i l e p a t h . endswith ( ” . png” ) or f i l e p a t h .

endswith ( ” . jpg ” ) or f i l e p a t h . endswith ( ” . jpeg ”

) or f i l e p a t h . endswith ( ” . pgm” ) :

75 index += 1

76 i f index == 0 :

77 s h u t i l . rmtree ( f a c e p r o f i l e )

78 print ( ”\nDeleted ” , f a c e p r o f i l e , ” because i t

conta in s no images ” )

79 i f index < 2 :

80 l ogg ing . e r r o r ( ”\nFace p r o f i l e ” + str ( f a c e p r o f i l e

) + ” conta in s too l i t t l e images (At l e a s t 2

images are needed ) ” )

81

82

83 def l o a d t r a i n i n g d a t a ( f a c e p r o f i l e d i r e c t o r y ) :

84 ”””
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85 Loads a l l the images from the face p r o f i l e d i r e c t o r y in t o

ndarrays

86

87 Parameters

88 −−−−−−−−−−
89 f a c e p r o f i l e d i r e c t o r y : s t r i n g

90 The d i r e c t o r y path o f the s p e c i f i e d face p r o f i l e d i r e c t o r y

91

92 f a c e p r o f i l e name s : l i s t

93 The index corresponding to the names corresponding to the

face p r o f i l e d i r e c t o r y

94

95 Returns

96 −−−−−−−
97 X data : numpy array , shape = (

numb e r o f f a c e s i n f a c e p r o f i l e s , f a c e p i x e l w i d t h ∗
f a c e p i x e l h e i g h t )

98 A face data array conta ins the face image p i x e l rgb va l u e s

o f a l l f a c e p r o f i l e s

99

100 Y data : numpy array , shape = ( numbe r o f f a c e p r o f i l e s , 1)

101 A f a c e p r o f i l e i n d e x data array conta ins the indexs o f a l l

the face p r o f i l e names

102

103 ”””

104 d e l e t e e m p t y p r o f i l e ( f a c e p r o f i l e d i r e c t o r y ) # de l e t e p r o f i l e

d i r e c t o r y wi thout images

105

106 # Get a the l i s t o f f o l d e r names in f a c e p r o f i l e as the

p r o f i l e names

107 f a c e p r o f i l e n a m e s = [ d for d in os . l i s t d i r (

f a c e p r o f i l e d i r e c t o r y ) i f ” . ” not in str (d) ]

108

109 i f len ( f a c e p r o f i l e n a m e s ) < 2 :

110 l ogg ing . e r r o r ( ”\nFace p r o f i l e conta in s too l i t t l e p r o f i l e s

(At l e a s t 2 p r o f i l e s are needed ) ” )

111 e x i t ( )

112

113 f i r s t d a t a = str ( f a c e p r o f i l e n a m e s [ 0 ] )

114 f i r s t d a t a p a t h = os . path . j o i n ( f a c e p r o f i l e d i r e c t o r y ,

f i r s t d a t a )
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115 X1 , y1 = r e a d i m a g e s f r o m s i n g l e f a c e p r o f i l e ( f i r s t d a t a p a t h ,

0)

116 X data = X1

117 Y data = y1

118 print ( ”Loading Database : ” )

119 print (0 , ” ” ,X1 . shape [ 0 ] , ” images are loaded from : ” ,

f i r s t d a t a p a t h )

120 for i in range (1 , len ( f a c e p r o f i l e n a m e s ) ) :

121 di rectory name = str ( f a c e p r o f i l e n a m e s [ i ] )

122 d i r e c t o r y p a t h = os . path . j o i n ( f a c e p r o f i l e d i r e c t o r y ,

d i rectory name )

123 tempX , tempY = r e a d i m a g e s f r o m s i n g l e f a c e p r o f i l e (

d i r e c to ry path , i )

124 X data = np . concatenate ( ( X data , tempX) , a x i s =0)

125 Y data = np . append ( Y data , tempY)

126 print ( i , ” ” ,tempX . shape [ 0 ] , ” images are loaded from : ”

, d i r e c t o r y p a t h )

127

128 return X data , Y data , f a c e p r o f i l e n a m e s

129

130

131 def ro ta te image ( img , ro ta t i on , s c a l e = 1 . 0 ) :

132 ”””

133 Rotate an image rgb matrix wi th the same dimensions

134

135 Parameters

136 −−−−−−−−−−
137 image : s t r i n g

138 the image rgb matrix

139

140 r o t a t i on : i n t

141 The ro t a t i on ang le in which the image r o t a t e s to

142

143 s c a l e : f l o a t

144 The s c a l e mu l t i p l i e r o f the ro t a t ed image

145

146 Returns

147 −−−−−−−
148 ro t img : numpy array

149 Rotated image a f t e r r o t a t i on

150
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151 ”””

152 i f r o t a t i o n == 0 : return img

153 h , w = img . shape [ : 2 ]

154 rot mat = cv2 . getRotationMatrix2D ( (w/2 , h/2) , ro ta t i on , s c a l e )

155 rot img = cv2 . warpAff ine ( img , rot mat , (w, h) , f l a g s=cv2 .

INTER LINEAR)

156 return rot img

157

158 def tr im ( img , dim ) :

159 ”””

160 Trim the four s i d e s ( b l a c k paddings ) o f the image matrix and

crop out the middle wi th a new dimension

161

162 Parameters

163 −−−−−−−−−−
164 img : s t r i n g

165 the image rgb matrix

166

167 dim : t u p l e ( in t , i n t )

168 The new dimen the image i s trimmed to

169

170 Returns

171 −−−−−−−
172 trimmed img : numpy array

173 The trimmed image a f t e r removing b l a c k paddings from four

s i d e s

174

175 ”””

176

177 # i f the img has a sma l l e r dimension then re turn the o r i g i n

image

178 i f dim [ 1 ] >= img . shape [ 0 ] and dim [ 0 ] >= img . shape [ 1 ] : return

img

179 x = int ( ( img . shape [ 0 ] − dim [ 1 ] ) /2) + 1

180 y = int ( ( img . shape [ 1 ] − dim [ 0 ] ) /2) + 1

181 trimmed img = img [ x : x + dim [ 1 ] , y : y + dim [ 0 ] ] # crop the

image

182 return trimmed img

183

184

185
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186 def c l e a n d i r e c t o r y ( f a c e p r o f i l e ) :

187 ”””

188 De l e t e s a l l the f i l e s in the s p e c i f i e d face p r o f i l e

189

190 Parameters

191 −−−−−−−−−−
192 f a c e p r o f i l e : s t r i n g

193 The d i r e c t o r y path o f a s p e c i f i e d face p r o f i l e

194

195 ”””

196

197 for t h e f i l e in os . l i s t d i r ( f a c e p r o f i l e ) :

198 f i l e p a t h = os . path . j o i n ( f a c e p r o f i l e , t h e f i l e )

199 try :

200 i f os . path . i s f i l e ( f i l e p a t h ) :

201 os . un l ink ( f i l e p a t h )

202 #e l i f os . path . i s d i r ( f i l e p a t h ) : s h u t i l . rmtree (

f i l e p a t h )

203 except Exception as e :

204 print ( e )

205

206

207 def c r e a t e d i r e c t o r y ( f a c e p r o f i l e ) :

208 ”””

209 Create a face p r o f i l e d i r e c t o r y f o r sav ing images

210

211 Parameters

212 −−−−−−−−−−
213 f a c e p r o f i l e : s t r i n g

214 The d i r e c t o r y path o f a s p e c i f i e d face p r o f i l e

215

216 ”””

217 try :

218 print ( ”Making d i r e c t o r y ” )

219 os . makedirs ( f a c e p r o f i l e )

220 except OSError as except ion :

221 i f except ion . er rno != errno . EEXIST :

222 print ( ”The s p e c i f i e d f a c e p r o f i l e a l r eady ex i s t ed , i t

w i l l be o v e r r i d e ” )

223 raise

224
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225 def c r e a t e p r o f i l e i n d a t a b a s e ( f a c e p r o f i l e n a m e , database path=”

. . / f a c e p r o f i l e s /” , c l e a n d i r e c t o r y=False ) :

226 ”””

227 Create a face p r o f i l e d i r e c t o r y in the database

228

229 Parameters

230 −−−−−−−−−−
231 f a c e p ro f i l e name : s t r i n g

232 The s p e c i f i e d face p r o f i l e name o f a s p e c i f i e d face

p r o f i l e f o l d e r

233

234 da tabase pa th : s t r i n g

235 Defau l t da tabase d i r e c t o r y

236

237 c l e a n d i r e c t o r y : boo lean

238 Clean the d i r e c t o r y i f the user a l r eady e x i s t s

239

240 Returns

241 −−−−−−−
242 f a c e p r o f i l e p a t h : s t r i n g

243 The path o f the face p r o f i l e c rea t ed

244

245 ”””

246 f a c e p r o f i l e p a t h = database path + f a c e p r o f i l e n a m e + ”/”

247 c r e a t e d i r e c t o r y ( f a c e p r o f i l e p a t h )

248 # Dele te a l l the p i c t u r e s b e f o r e record ing new

249 i f c l e a n d i r e c t o r y :

250 c l e a n d i r e c t o r y ( f a c e p r o f i l e p a t h )

251 return f a c e p r o f i l e p a t h

B.1.2 Building the SVM

1

2 import cv2

3 import os

4 import numpy as np

5 from s c ipy import ndimage

6 from time import time

7 import warnings

8

9 with warnings . catch warn ings ( ) :

10 warnings . s i m p l e f i l t e r ( ” i gnore ” )
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11 from s k l e a rn . c r o s s v a l i d a t i o n import t r a i n t e s t s p l i t

12

13 from s k l e a rn . da ta s e t s import f e t c h l f w p e o p l e

14 from s k l e a rn . g r i d s e a r c h import GridSearchCV

15 from s k l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t

16 from s k l e a rn . met r i c s import con fus i on matr ix

17 from s k l e a rn . decomposit ion import RandomizedPCA

18 from s k l e a rn . svm import SVC

19 import matp lo t l i b . pyplot as p l t

20 import numpy

21 import u t i l s as ut

22 from s k l e a rn . met r i c s import accu racy s co r e

23

24

25 def test SVM ( f a c e p r o f i l e d a t a , f a c e p r o f i l e n a m e i n d e x , face dim ,

f a c e p r o f i l e n a m e s ) :

26 ”””

27 Test ing : Bui ld the SVM c l a s s i f i c a t i o n modle us ing the

f a c e p r o f i l e d a t a matrix (numOfFace X numOfPixel ) and

f a c e p r o f i l e name ind e x array , face dim i s a t u p l e o f the

dimension o f each image (h ,w) Returns the SVM

c l a s s i f i c a t i o n modle

28 Parameters

29 −−−−−−−−−−
30 f a c e p r o f i l e d a t a : ndarray ( numbe r o f imag e s i n f a c e p r o f i l e s

, width ∗ h e i g h t o f the image )

31 The pca t ha t conta ins the top e i g en v e c t o r s e x t r a c t e d us ing

approximated S ingu la r Value Decomposition o f the data

32

33 f a c e p r o f i l e name ind e x : ndarray

34 The name corresponding to the face p r o f i l e i s encoded in

i t s index

35

36 face d im : t u p l e ( in t , i n t )

37 The dimension o f the face data i s reshaped to

38

39 f a c e p r o f i l e name s : ndarray

40 The names corresponding to the face p r o f i l e s

41 Returns

42 −−−−−−−
43 c l f : theano o b j e c t
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44 The t ra ined SVM c l a s s i f i c a t i o n model

45

46 pca : theano o j b e c t

47 The pca t ha t con ta ins the top 150 e i g en v e c t o r s e x t r a c t e d

us ing approximated S ingu la r Value Decomposition o f the

data

48

49 ”””

50 X = f a c e p r o f i l e d a t a

51 y = f a c e p r o f i l e n a m e i n d e x

52

53 X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y ,

t e s t s i z e =0.25 , random state =42)

54

55 # Compute a PCA ( e i g en f a c e s ) on the face da t a s e t ( t r e a t e d as

un l a b e l e d

56 # da ta s e t ) : unsuperv i sed f e a t u r e e x t r a c t i on / d imens i ona l i t y

reduc t ion

57 n components = 150 # maximum number o f components to keep

58

59 print ( ”\nExtract ing the top %d e i g e n f a c e s from %d f a c e s ” % (

n components , X tra in . shape [ 0 ] ) )

60

61 pca = RandomizedPCA( n components=n components , whiten=True ) .

f i t ( X tra in )

62 e i g e n f a c e s = pca . components . reshape ( ( n components , face d im

[ 0 ] , face d im [ 1 ] ) )

63

64

65 # This por t i on o f the code i s used i f the data i s scarce , i t

uses the number

66 # of imputs as the number o f f e a t u r e s

67 # pca = RandomizedPCA( n components=None , whiten=True ) . f i t (

X tra in )

68 # e i g en f a c e s = pca . components . reshape ( ( pca . components . shape

[ 0 ] , face dim [ 0 ] , face dim [ 1 ] ) )

69

70 print ( ”\ nPro j ec t ing the input data on the e i g e n f a c e s

orthonormal b a s i s ” )

71 X tra in pca = pca . trans form ( X tra in )

72 X tes t pca = pca . trans form ( X tes t )
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73

74 # Train a SVM c l a s s i f i c a t i o n model

75

76 print ( ”\ nF i t t ing the c l a s s i f i e r to the t r a i n i n g s e t ” )

77 param grid = { ’C ’ : [ 1 e3 , 5e3 , 1e4 , 5e4 , 1 e5 ] ,

78 ’gamma ’ : [ 0 . 0 0 0 1 , 0 .0005 , 0 . 001 , 0 . 005 , 0 . 01 ,

0 . 1 ] , }
79

80

81

82 # Best Est imator found us ing Radia l Basis Function Kernal :

83 c l f = SVC(C=1000.0 , c a c h e s i z e =200 , c l a s s w e i g h t=’ balanced ’ ,

c o e f 0 =0.0 ,

84 d e c i s i o n f u n c t i o n s h a p e=None , degree =3, gamma=0.0001 , k e rne l=’

rb f ’ ,

85 max iter=−1, p r o b a b i l i t y=False , random state=None , sh r ink ing=

True ,

86 t o l =0.001 , verbose=False )

87

88

89 #

##############################################################################

90 # Quan t i t a t i v e e va l ua t i on o f the model q u a l i t y on the t e s t s e t

91 print ( ”\ nPred i c t ing people ’ s names on the t e s t s e t ” )

92 t0 = time ( )

93 y pred = c l f . p r e d i c t ( X te s t pca )

94 print ( ”\ nPred i c t i on took %0.8 f second per sample on average ” %

( ( time ( ) − t0 ) / y pred . shape [ 0 ] ∗ 1 . 0 ) )

95

96 # pr in t ” p r ed i ca t ed names : ” , y pred

97 # pr in t ” ac t ua l names : ” , y t e s t

98 e r r o r r a t e = errorRate ( y pred , y t e s t )

99 print ( ”\nTest Error Rate : %0.4 f %%” % ( e r r o r r a t e ∗ 100) )

100 print ( ” Test Recognit ion Rate : %0.4 f %%” % ( ( 1 . 0 − e r r o r r a t e )

∗ 100) )

101

102

103 return c l f , pca

104

105
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106 def p l o t g a l l e r y ( images , t i t l e s , face dim , n row=3, n c o l =4) :

107 # ”””Helper func t i on to p l o t a g a l l e r y o f p o r t r a i t s ”””

108 p l t . f i g u r e ( f i g s i z e =(1.8 ∗ n co l , 2 . 4 ∗ n row ) )

109 p l t . s u b p l o t s a d j u s t ( bottom=0, l e f t =.01 , r i g h t =.99 , top

=.90 , hspace =.35)

110 for i in range ( n row ∗ n c o l ) :

111 p l t . subp lot ( n row , n co l , i + 1)

112 p l t . imshow ( images [ i ] . reshape ( face d im ) , cmap=p l t . cm .

gray )

113 p l t . t i t l e ( t i t l e s [ i ] , s i z e =12)

114 p l t . x t i c k s ( ( ) )

115 p l t . y t i c k s ( ( ) )

116

117

118 def build SVC ( f a c e p r o f i l e d a t a , f a c e p r o f i l e n a m e i n d e x , face d im

) :

119 ”””

120 Bui ld the SVM c l a s s i f i c a t i o n modle us ing the f a c e p r o f i l e d a t a

matrix (numOfFace X numOfPixel ) and

f a c e p r o f i l e name ind e x array , face dim i s a t u p l e o f the

dimension o f each image (h ,w) Returns the SVM

c l a s s i f i c a t i o n modle

121 Parameters

122 −−−−−−−−−−
123 f a c e p r o f i l e d a t a : ndarray ( numbe r o f imag e s i n f a c e p r o f i l e s

, width ∗ h e i g h t o f the image )

124 The pca t ha t conta ins the top e i g en v e c t o r s e x t r a c t e d us ing

approximated S ingu la r Value Decomposition o f the data

125

126 f a c e p r o f i l e name ind e x : ndarray

127 The name corresponding to the face p r o f i l e i s encoded in

i t s index

128

129 face d im : t u p l e ( in t , i n t )

130 The dimension o f the face data i s reshaped to

131

132 Returns

133 −−−−−−−
134 c l f : theano o b j e c t

135 The t ra ined SVM c l a s s i f i c a t i o n model

136
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137 pca : theano o j b e c t

138 The pca t ha t conta ins the top 150 e i g en v e c t o r s e x t r a c t e d

us ing approximated S ingu la r Value Decomposition o f the

data

139

140 ”””

141

142 X = f a c e p r o f i l e d a t a

143 y = f a c e p r o f i l e n a m e i n d e x

144

145 X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y ,

t e s t s i z e =0.25 , random state =42)

146

147 # Compute a PCA ( e i g en f a c e s ) on the face da t a s e t ( t r e a t e d as

un l a b e l e d

148 # da ta s e t ) : unsuperv i sed f e a t u r e e x t r a c t i on / d imens i ona l i t y

reduc t ion

149 n components = 150 # maximum number o f components to keep

150

151 print ( ”\nExtract ing the top %d e i g e n f a c e s from %d f a c e s ” % (

n components , X tra in . shape [ 0 ] ) )

152

153 pca = RandomizedPCA( n components=n components , whiten=True ) .

f i t ( X tra in )

154 e i g e n f a c e s = pca . components . reshape ( ( n components , face d im

[ 0 ] , face d im [ 1 ] ) )

155 e i g e n f a c e t i t l e s = [ ” e i g e n f a c e %d” % i for i in range (

e i g e n f a c e s . shape [ 0 ] ) ]

156 p l o t g a l l e r y ( e i g e n f a c e s , e i g e n f a c e t i t l e s , face d im )

157

158

159

160 print ( ”\ nPro j ec t ing the input data on the e i g e n f a c e s

orthonormal b a s i s ” )

161 X tra in pca = pca . trans form ( X tra in )

162 X tes t pca = pca . trans form ( X tes t )

163

164 # Train a SVM c l a s s i f i c a t i o n model

165

166 print ( ”\ nF i t t ing the c l a s s i f i e r to the t r a i n i n g s e t ” )

167 param grid = { ’C ’ : [ 1 e3 , 5e3 , 1e4 , 5e4 , 1 e5 ] ,
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168 ’gamma ’ : [ 0 . 0 0 0 1 , 0 .0005 , 0 . 001 , 0 . 005 , 0 . 01 ,

0 . 1 ] , }
169 # c l f = GridSearchCV(SVC( ke rne l =’ r b f ’ , c l a s s w e i g h t =’ ba lanced

’) , param grid )

170

171 # Best Est imator found us ing Radia l Basis Function Kernal :

172 c l f = SVC(C=1000.0 , c a c h e s i z e =200 , c l a s s w e i g h t=’ balanced ’ ,

c o e f 0 =0.0 ,

173 d e c i s i o n f u n c t i o n s h a p e=None , degree =3, gamma=0.0001 , k e rne l=’

rb f ’ ,

174 max iter=−1, p r o b a b i l i t y=True , random state=None , sh r ink ing=True

,

175 t o l =0.001 , verbose=False )

176 # Train pca wi th Test Error Rate : 0.088424437299

177 # Train pca wi th Test Recogni t ion Rate : 0.911575562701

178

179 c l f = c l f . f i t ( X tra in pca , y t r a i n )

180 # pr in t (”\ nBest e s t imator found by g r i d search : ” )

181 # pr in t ( c l f . b e s t e s t ima t o r )

182

183 #

##############################################################################

184 # Quan t i t a t i v e e va l ua t i on o f the model q u a l i t y on the t e s t s e t

185 print ( ”\ nPred i c t ing people ’ s names on the t e s t s e t ” )

186 t0 = time ( )

187 y pred = c l f . p r e d i c t ( X te s t pca )

188 probs = c l f . p r ed i c t p roba ( X tes t pca )

189

190 print ( ”\ nPred i c t i on took %s per sample on average ” % ( ( time ( )

− t0 ) / y pred . shape [ 0 ] ∗ 1 . 0 ) )

191

192 e r r o r r a t e = errorRate ( y pred , y t e s t )

193 print ( ”\nTest Error Rate : %0.4 f %%” % ( e r r o r r a t e ∗ 100) )

194 print ( ” Test Recognit ion Rate : %0.4 f %%” % ( ( 1 . 0 − e r r o r r a t e )

∗ 100) )

195

196 return c l f , pca

197

198

199 def p r e d i c t ( c l f , pca , img , f a c e p r o f i l e n a m e s ) :
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200 ”””

201 Pred ic t the name o f the supp l i e d image from the l i s t o f f a ce

p r o f i l e names

202

203 Parameters

204 −−−−−−−−−−
205 c l f : theano o b j e c t

206 The t ra ined svm c l a s s i f i e r

207

208 pca : theano o b j e c t

209 The pca t ha t conta ins the top e i g en v e c t o r s e x t r a c t e d us ing

approximated S ingu la r Value Decomposition o f the data

210

211 img : ndarray

212 The input image f o r p r e d i c t i on

213

214 f a c e p r o f i l e name s : l i s t

215 The names corresponding to the face p r o f i l e s

216 Returns

217 −−−−−−−
218 name : s t r i n g

219 The pred i ca t ed name

220

221 ”””

222

223

224 img = img . r a v e l ( )

225

226 img=img . reshape (1 , −1)

227

228 # Apply d imen t i ona l i t y reduc t ion on img , img i s p r o j e c t e d on

the f i r s t p r i n c i p a l components prev ious e x t r a c t e d from the

Yale Extended da t a s e t B.

229 pr inc ip l e component s = pca . trans form ( img )

230

231 pred = c l f . p r e d i c t ( pr inc ip l e component s )

232 probs = c l f . p r ed i c t p roba ( pr inc ip l e component s ) [ 0 ]

233 # pr in t (max( probs ) )

234 i f (max( probs ) <0.4) :

235 name =”Unknown”

236 else :
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237 str = pred [ 0 ]

238 name = f a c e p r o f i l e n a m e s [ str ]

239

240 return name

241

242 def errorRate ( pred , a c tua l ) :

243 ”””

244 Ca l cu l a t e name p r ed i c t i on error ra t e

245

246 Parameters

247 −−−−−−−−−−
248 pred : ndarray (1 , numbe r o f imag e s i n f a c e p r o f i l e s )

249 The pred i ca t ed names o f the t e s t da t a s e t

250

251 ac t ua l : ndarray (1 , numbe r o f imag e s i n f a c e p r o f i l e s )

252 The ac tua l names o f the t e s t da t a s e t

253

254 Returns

255 −−−−−−−
256 e r r o r r a t e : f l o a t

257 The c a l c u a l t e d error ra t e

258

259 ”””

260 i f pred . shape != ac tua l . shape : return None

261 e r r o r r a t e = np . count nonzero ( pred − ac tua l ) / f loat ( pred . shape

[ 0 ] )

262 return e r r o r r a t e

B.1.3 Training

1 ”””

2 ====================================================

3 Automated Attendance Reg i s t e r

4 ====================================================

5

6 The da t a s e t used i s the Extended Yale Database B Cropped

7

8 h t t p :// v i s i on . ucsd . edu/˜ l e e k c /ExtYaleDatabase/ExtYaleB . html

9

10

11 Summary :

12 Used f o r f ace p r o f i l e data c o l l e c t i o n in r e a l time
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13 f a ce t r a i n i n g f o r r e co gn i t i on

14

15 Run :

16 ∗ Training f o r face r e co gn i t i on us ing the command below .

f a c e p ro f i l e name i s the name o f the user face p r o f i l e

d i r e c t o r y t ha t you want to c r ea t e in the d e f a u l t . . /

f a c e p r o f i l e s / f o l d e r f o r s t o r i n g user f ace images and

t r a i n i n g the SVM c l a s s i f i c a t i o n model :

17

18 python t r a i n . py [ f a c e p ro f i l e name=<the name o f the

p r o f i l e f o l d e r in database >]

19

20 ∗ Example to c r ea t e a face p r o f i l e named David :

21

22 python t r a i n . py David

23

24

25 Usage during run time :

26

27 pre s s and ho ld ’ p ’ to take p i c t u r e s o f you con t inuous l y

once a cropped face i s d e t e c t e d from a pop up window .

A l l images are saved under . . / f a c e p r o f i l e s /

f a c e p ro f i l e name

28

29 pre s s ’ q ’ or ’ESC ’ to q u i t the a p p l i c a t i o n

30

31

32 ”””

33

34 import cv2

35 import numpy as np

36 from s c ipy import ndimage

37 import sys

38 import os

39 from Str ingIO import Str ingIO

40 import u t i l s as ut

41 from Tkinter import ∗
42

43

44

45 FACE DIM = (200 , 200)
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46 SKIP FRAME = 2 # the f i x e d s k i p frame

47 f r a m e s k i p r a t e = 0 # sk i p SKIP FRAME frames every o ther frame

48 SCALE FACTOR = 1 # used to r e s i z e the captured frame fo r face

d e t e c t i on f o r f a s t e r p roce s s ing speed

49 f a c e c a s c a d e = cv2 . C a s c a d e C l a s s i f i e r ( ” . . / c l a s s i f i e r /

h a a r c a s c a d e f r o n t a l f a c e d e f a u l t . xml” ) #crea t e a cascade

c l a s s i f i e r

50 s ideFace ca scade = cv2 . C a s c a d e C l a s s i f i e r ( ’ . . / c l a s s i f i e r /

h a a r c a s c a d e p r o f i l e f a c e . xml ’ )

51

52 # di c t i ona r y mapping used to keep t rack o f head ro t a t i on maps

53 rotat ion maps = {
54 ” l e f t ” : np . array ([−30 , 0 , 3 0 ] ) ,

55 ” r i g h t ” : np . array ( [ 3 0 , 0 , −30]) ,

56 ” middle ” : np . array ( [ 0 , −30, 3 0 ] ) ,

57 }
58

59 def get ro tat ion map ( r o t a t i o n ) :

60 ””” Takes in an ang le ro ta t i on , and re turns an opt imized

r o t a t i on map ”””

61 i f r o t a t i o n > 0 : return rotat ion maps . get ( ” r i g h t ” , None )

62 i f r o t a t i o n < 0 : return rotat ion maps . get ( ” l e f t ” , None )

63 i f r o t a t i o n == 0 : return rotat ion maps . get ( ” middle ” , None )

64

65 cur r ent ro ta t i on map = get rotat ion map (0)

66

67

68 webcam = cv2 . VideoCapture (0 )

69 webcam . set ( cv2 .CAP PROP FPS, 6 0 )

70 ret , frame = webcam . read ( ) # ge t f i r s t frame

71 f r a m e s c a l e = ( frame . shape [ 1 ] /SCALE FACTOR, frame . shape [ 0 ] /

SCALE FACTOR) # (y , x )

72

73 c ropped face = [ ]

74 n u m o f f a c e t o c o l l e c t = 150

75 num of face saved = 0

76

77 # For sav ing face data to d i r e c t o r y

78 p r o f i l e f o l d e r p a t h = None

79

80 window2 = Tk( )
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81 f i l ename=Str ingVar ( )

82 window2 . t i t l e ( ”Automated Attendance Reg i s t e r ” )

83 l a b e l 1 = Label ( t ex t=” Enter student number f o l l owed by name and

surname” , f ont =(”Times New Roman” , 15) )

84 l a b e l 1 . g r i d ( column=0, row=0)

85

86 entry1 = Entry ( t e x t v a r i a b l e=f i l ename )

87 entry1 . g r id ( column=0, row=1)

88

89 def back ( ) :

90 window2 . withdraw ( )

91 os . system ( ”python frontEnd . py” )

92

93 def save ( ) :

94 global f i l ename

95 f i l ename=entry1 . get ( )

96 window2 . des t roy ( )

97

98

99 btnBack = Button ( window2 , t ex t=”Back” , f ont =(”Times New Roman” ,

11) , command=back )

100 btnBack . g r id ( row=2, column=1, padx=5)

101

102 btnSave = Button ( window2 , t ex t=”Save” , f ont =(”Times New Roman” ,

11) , command=save )

103 btnSave . g r id ( row=2, column=0, padx=5)

104

105 window2 . mainloop ( )

106

107 #pr in t ”Enter s tuden t number f o l l owed by name and surname”

108

109 print ( f i l ename )

110

111 p r o f i l e f o l d e r p a t h = ut . c r e a t e p r o f i l e i n d a t a b a s e ( f i l ename )

112

113

114 while r e t :

115 key = cv2 . waitKey (1 )

116 # e x i t on ’ q ’ ’ esc ’ ’Q’

117 i f key in [ 2 7 , ord ( ’Q ’ ) , ord ( ’ q ’ ) ] :

118 break
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119 # r e s i z e the captured frame fo r face d e t e c t i on to inc rea se

proce s s ing speed

120 r e s i z e d f r a m e = cv2 . r e s i z e ( frame , f r a m e s c a l e )

121

122 proces sed f rame = r e s i z e d f r a m e

123 # Skip a frame i f the no face was found l a s t frame

124 i f f r a m e s k i p r a t e == 0 :

125 faceFound = False

126 for r o t a t i o n in cur rent ro ta t i on map :

127

128 rotated f rame = ndimage . r o t a t e ( r e s i z ed f rame , r o t a t i o n

)

129

130 gray = cv2 . cvtColor ( rotated f rame , cv2 .COLOR BGR2GRAY)

131

132 # return t u p l e i s empty , ndarray i f d e t e c t e d face

133 f a c e s = f a c e c a s c a d e . de t e c tMu l t iS ca l e (

134 gray ,

135 s c a l e Fa c t o r =1.3 ,

136 minNeighbors =5,

137 minSize =(30 , 30) ,

138 f l a g s=cv2 .CASCADE SCALE IMAGE

139 )

140

141 # I f f r o n t a l f a ce d e t e c t o r f a i l e d , use p r o f i l e f a c e

d e t e c t o r

142 f a c e s = f a c e s i f len ( f a c e s ) else s ideFace ca scade .

de t e c tMu l t iS ca l e (

143 gray ,

144 s c a l e Fa c t o r =1.3 ,

145 minNeighbors =5,

146 minSize =(30 , 30) ,

147 f l a g s=cv2 .CASCADE SCALE IMAGE

148 )

149

150 i f len ( f a c e s ) :

151 for f in f a c e s :

152 x , y , w, h = [ v for v in f ] # sca l e the

bounding box back to o r i g i n a l frame s i z e

153 c ropped face = rotated f rame [ y : y + h , x : x +

w] # img [ y : y + h , x : x + w]
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154 c ropped face = cv2 . r e s i z e ( cropped face ,

FACE DIM, i n t e r p o l a t i o n = cv2 .INTER AREA)

155 cv2 . r e c t a n g l e ( rotated f rame , (x , y ) , ( x+w, y+h) ,

(0 , 255 ,0 ) )

156 cv2 . putText ( rotated f rame , ” Train ing Face” , (x

, y ) , cv2 .FONT HERSHEY SIMPLEX, 1 . 0 ,

(0 , 255 ,0 ) )

157

158 # ro t a t e the frame back and trim the b l a c k

paddings

159 proces sed f rame = ut . tr im ( ut . ro ta te image (

rotated f rame , r o t a t i o n ∗ (−1) ) , f r a m e s c a l e )

160

161 # re s e t the optmized r o t a t i on map

162 cur rent ro ta t i on map = get rotat ion map ( r o t a t i o n )

163

164 faceFound = True

165

166

167 break

168

169 i f faceFound :

170 f r a m e s k i p r a t e = 0

171 # pr in t ”Face Found”

172 else :

173 f r a m e s k i p r a t e = SKIP FRAME

174 # pr in t ”Face Not Found”

175

176 else :

177 f r a m e s k i p r a t e −= 1

178 # pr in t ”Face Not Found”

179

180

181

182 cv2 . putText ( processed f rame , ” Press ’p ’ to take a p i c t u r e and

’ q ’ to qu i t ” , (5 , 50) ,

183 cv2 .FONT HERSHEY SIMPLEX, 0 . 8 , (0 , 255 ,0 ) )

184

185 cv2 . imshow ( ”Real Time Fac i a l Recogni t ion ” , proce s sed f rame )

186

187
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188

189 i f len ( c ropped face ) :

190 cv2 . imshow ( ”Cropped Face” , cv2 . cvtColor ( cropped face , cv2 .

COLOR BGR2GRAY) )

191 i f num of face saved < n u m o f f a c e t o c o l l e c t and key ==

ord ( ’p ’ ) :

192 f a c e t o s a v e = cv2 . r e s i z e ( cropped face , (50 , 50) ,

i n t e r p o l a t i o n = cv2 .INTER AREA)

193 face name = p r o f i l e f o l d e r p a t h+str ( num of face saved )

+” . png”

194 save=cv2 . cvtColor ( f a c e t o s a v e , cv2 .COLOR BGR2GRAY)

195 cv2 . imwrite ( face name , save )

196 print ” Pic Saved : ” , face name

197 num of face saved += 1

198

199 # ge t next frame

200 ret , frame = webcam . read ( )

201

202

203 webcam . r e l e a s e ( )

204 cv2 . destroyAllWindows ( )

205 os . system ( ”python frontEnd . py” )



Bibliography

Bishop, C. M. (2016). Pattern Recognition and Machine Learning. Springer-

Verlag New York.

Chintalapati, S. and Raghunadh, M. V. (2013). Automated attendance man-

agement system based on face recognition algorithms. In IEEE International

Conference on Computational Intelligence and Computing Research, pages

1–5.

Domingos, P. (2012). A few useful things to know about machine learning.

Communications of the ACM, 55(10):78–87.

Jensen, O. H. (2008). Implementing the Viola-Jones face detection algorithm.

Master’s thesis, Technical University of Denmark, Lyngby, Denmark.

Jha, A. (2007). Class room attendance system using facial recognition sys-

tem. International Journal of Mathematics, Science, Technology and Man-

agement, 2(3):4–7.

Kumar, K. S., Semwal, V. B., and Tripathi, R. C. (2011). Real time face

recognition using adaboost improved fast PCA algorithm. International

Journal of Artificial Intelligence and Applications, 2(3):45–58.

Newman-Ford, L., Fitzgibbon, K., Lloyd, S., and Thomas, S. (2008). A large-

scale investigation into the relationship between attendance and attainment:

a study using an innovative, electronic attendance monitoring system. Stud-

ies in Higher Education, 33(6):699–717.

Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology,

24(12):15–65.

Othman, M., Ismail, S. N., and Raus, M. I. M. (2009). The development of

the web-based attendance register system (ARS) for higher academic insti-

tution: From feasibility study to the design phase. International Journal of

Computer Science and Network Security, 9(10):203–208.

53



54

Patel, U. A. and Priya, S. (2014). Development of a student attendance man-

agement system using RFID and face recognition: A review. International

Journal of Advance Research in Computer Science and Management Stud-

ies, 2(8):109–119.

Turk, M. A. and Pentland, A. P. (1991). Face recognition using eigenfaces. In

Proceedings IEEE Conference on Computer Vision and Pattern Recognition,

pages 586–591.

Wang, Y.-Q. (2014). An analysis of the Viola-Jones face detection algorithm.

Image Processing On Line, 4:128–148.


