
�
!

Department of Computer Science
Visual Impaired Helper

!
A Mini-thesis

By
Kurt Sebastian Jacobs

!
Supervisor: Mehrdad Ghaziasgar

Date: 11 November 2013 

Page � of �1 40

Abstract

Studies conducted in June 2012 indicate
that 285 Million people are visually impaired. 
Approximately 90% of the worlds visually
impaired are situated in third world
countries.

It is estimated that 19 million children under
the age of 15 are visually impaired and
approximately 1.4 million are blind for life.
Information is provided courtesy of the
World Health Organisation

Those that are visually impaired and perhaps
even blind would also like to live life to the
fullest but are currently restricted by walking
sticks and guide dogs. The problem with
guide dogs is that they need to be trained,
this, however, takes time and requires a lot
to be invested in these dogs. One can thus
expect that such dogs cost a good sum of
money and they are not always readily
available. This affects the visually impaired
person for cost because they will have to
feed the dog and look after them just for
Page � of �2 40

said person to be able to move around and
navigate.

This project aims to solve this problem
through a technological approach, A video
sensor (Kinect Sensor) will be used to detect
objects in the real world as input and
calculate the possible route(s) the user can
possibly take to not collide with any object
within the range of the video

sensors field of vision. The information
obtained by way of the sensor is then
relayed to an Arduino Micro Controller which
in turn controls the vibration sensors on the
headband unit. The headband unit contains
little pockets in which each vibration sensor
is stored, these will vibrate accordingly and
only vibrate when the user can move in that
direction. Both the Kinect Sensor and
Arduino Micro Controller are connected
through a notebook computer.  

Page � of �3 40

Table of Contents
Chapter 1

1. Introduction	 	 	 	 	 	 	 	 	 	 7

1.1 Kinect SDK	 	 	 	 	 	 	 	 	 	 7

1.2 OpenCV	 	 	 	 	 	 	 	 	 	 7

1.3 EMGU CV	 	 	 	 	 	 	 	 	 	 8

1.4 Current Research	 	 	 	 	 	 	 	 	 8

Chapter 2

2. User Requirements	 	 	 	 	 	 	 	 	 9

2.1 Users View of The Problem	 	 	 	 	 	 	 9

2.2 Description of The Problem	 	 	 	 	 	 	 9

2.3 Expectation From The Solution	 	 	 	 	 	 10

2.4 Not To Be Expected From The Solution	 	 	 	 	 10

Chapter 3

3. Requirements Analysis	 	 	 	 	 	 	 	 11

3.1 Designers View, Breakdown of the problem	 	 	 	 11

3.2 Complete Analysis of the problem	 	 	 	 	 	 12

3.2.1 Detecting Objects In Real Time	 	 	 	 	 	 12

3.2.2 Obtaining The Closest Distance	 	 	 	 	 	 12

3.2.3 How Does Arduino Get Its Data?	 	 	 	 	 	 12

3.2.4 Controlling the headband	 	 	 	 	 	 	 13

3.2.5 Calculating Estimated Real World Size	 	 	 	 	 13

Chapter 4

4. User Interface Specification	 	 	 	 	 	 	 14

Chapter 5

Page � of �4 40

5. Project Design and Development	 	 	 	 	 	 15

5.1 High Level Design for Computer Vision	 	 	 	 	 15

5.1.1 A Description of the Concepts	 	 	 	 	 	 15

5.1.1.1 OpenCV	 	 	 	 	 	 	 	 	 	 15

5.1.1.2 Contour Detection	 	 	 	 	 	 	 	 15

5.1.1.3 Minimum Bounding Area Rectangle	 	 	 	 	 16

5.1.1.4 Kinect API	 	 	 	 	 	 	 	 	 16

5.1.2 Collision Detection – Binary Decision Diagram - Relationships Between
Objects	 	 	 	 	 	 	 	 	 	 	 16

5.2 Low Level Design for Computer Vision	 	 	 	 	 18

5.2.1 Capture Frames using an event handler model 	 	 	 18

5.2.2 Convert Kinect Frame to OpenCV image data structure	 	 19

5.2.3 Detect contours/blobs! ! ! ! ! ! ! ! 19!
5.2.4 Draw minimum area bounding box		 	 	 	 	 20

5.2.5 Collision detection and path finding algorithms	 	 	 20

5.2.6 Closest Distance Calculation		 	 	 	 	 	 21

5.3 High Level Design for Engineering 	 	 	 	 	 	 22

5.3.1 A Description of the Concepts	 	 	 	 	 	 22

5.3.1.1 Arduino SDK	 	 	 	 	 	 	 	 	 22

5.3.2 Relationships Between Objects	 	 	 	 	 	 22

5.4 Low Level Design for Engineering	 	 	 	 	 	 23

5.4.1 Start Serial Input 		 	 	 	 	 	 	 	 24

5.4.2 Read Each Char	 	 	 	 	 	 	 	 	 24

5.4.3 Vibrate Motors	 	 	 	 	 	 	 	 	 25

Chapter 6

6. Testing, Analysis & Results	 	 	 	 	 	 	 26

Page � of �5 40

6.1 Experiment 1 - Distance Accuracy	 	 	 	 	 	 25

6.2 Experiment 2 - BLOB Detection and Collision Detection 	 	 28

6.3 Experiment 3 - Testing The System For Getting Closest Distance For
Objects of Different Sizes & Shapes	 	 	 	 	 	 30

6.4 Experiment 4 - Width of Objects Apart	 	 	 	 	 32

6.5 Experiment 5 - Frame Rate Impact	 	 	 	 	 	 34

Chapter 7
7. Limitations & Caveats	 	 	 	 	 	 	 	 36

Chapter 8

8. Code Documentation	 	 	 	 	 	 	 	 37  

Page � of �6 40

1. Introduction

1.1 KinectSDK

The KinectSDK is a Software Development
Kit that allows a computer running Windows
to interface with the Kinect Sensor, It
supports three languages, Microsofts very
own VB.NET and C# and also C ++. I have
chosen to use the C# version of the SDK.

1.2 OpenCV (Open Computer Vision)
Library

OpenCV is an open source computer vision
library which was originally developed by the
Intel Corporation. OpenCV was originally
developed in C and currently its primary
interface is C++ however since then a
number of other language implementations
have been and added. OpenCV is
completely cross-platform so it works on all
the platforms, Mac OS, Linux and Windows.
OpenCV contains a myriad of functions
within the library, somewhere around the
region of 500 functions.

Page � of �7 40

1.3 EMGU CV

EmguCV is a .NET Wrapper for the OpenCV
Library and allows for the use of OpenCV
functions in .NET languages such as C# and
VB.NET.

1.4 Current Research

There have been quite a few projects that
have attempted to simplify and better the
way the visually impaired navigate, amongst
others there is the Eye Stick by Yanko
Design which has a camera mounted into
the walking stick and vibrates at the handle
if the user is about to collide with an object.
Another implementation is the attachment of
a robot to a walking stick which essentially
functions in a similar fashion to the Eye
Stick.

!

Page � of �8 40

2. User Requirements

This section will describe the requirements
that relate to the user and the problems they
face. This phase, in which I elicit the user
requirements is crucial to the success and
correctness of the solution.

2.1 Users View of The Problem

The user requires a cost effective solution
that allows him or her to navigate there way
around objects in the real world. The system
should allow the user to navigate without
colliding into objects by using an active
video stream from the Kinect Sensor. This
information should then be used to provide
feedback.

2.2 Description of the problem

The objective here is to remove the need for
a guide dog or generic walking stick and
replace it by use of technology. Guide dogs
are not a cost effective way of navigating for
the visually impaired.

!
Page � of �9 40

2.3 Expectations from the solution

The user will be able to navigate in any
direction in which the video sensor has field
of vision and can detect BLOBs. The focus
of this is to allow the user with a means of
navigating by themselves.

This is purely for research and could be used
for future implementations.

2.4 Not to be expected from the solution

There are a number of caveats that the
solution, at present, will not attempt to solve.
A few of these examples are that the system
will not detect stairs and/or a case like a
swimming pool. No GPS system will
currently be incorporated. The system will
not be the most comfortable to wear,
consider it a pre-alpha version of what it is
intended to be.

!

Page � of �10 40

3. Requirements Analysis

3.1 Designers View, Breakdown of the
problem

Users require a cost effective way to
navigate around without the use of guide
dogs because they are costly, take time to
train and are not always readily available for
adoption. The input into the system can
possibly be a prerecorded video stream
(captured through the Kinect i.e Depth and
RGB frames) or a live stream from the Kinect
Sensor. The Notebook of PC captures the
stream from the Kinect Sensor and then
objects will be detected on a per-frame
basis and send the processed information to
the Arduino Micro Controller. The Arduino
Micro Controller then uses this processed
information from the Kinect Sensor to decide
which motor(s) to vibrate.

!
!
!
!

Page � of �11 40

3.2 Complete Analysis of the problem

3.2.1 Detecting Objects In Real Time

A Kinect Sensor captures the frames and
sends them to the PC, an algorithm is then
used to check each for BLOBs. Once the
BLOBs are detected they are categorised
into segments. Once categorised the closest
distance is obtained and converted to an
intensity (ranging between 0 - 255) based on
depth. This data is stored as a comma
separated string.

3.2.2 Obtaining The Closest Distance
The closest distance is obtained by
accessing the depth pixels array that is
stored when the Kinect’s IR depth sensor
reads the Infrared data from the Kinect IR
emitter.

3.2.3 How Does Arduino Get Its Data?

The Arduino board is programmed in C and
the instructions are then flashed to the board
via USB, in the program instructions will be
added that allows Arduino to listen on a
Page � of �12 40

serial communications port. All data will be
transferred via serial communications.

3.2.4 Controlling the headband

The headband is controlled by the Arduino
micro controller that is flashed with a C
program that accepts a comma separated
string that contains values that indicate the
intensity and drives the appropriate vibration
motor at this intensity (values ranging
between 0 and 255).

3.2.5 Calculating Estimated Real World
Size
An estimated real world size is calculated
using the formula
(DEPTH*(BLOBWIDTH*2*TAN(PI / 180 * (57 /
2))))/640 for real world width

(DEPTH*(BLOBHEIGHT*2*TAN(PI / 180 *
(43 / 2))))/480 for real world height

This is an estimate because the
bounding box is tries to minimise the
area but is not exact. 
Page � of �13 40

4. User Interface Specification
The user interface is simple, the user wears
the headband and the motors vibrate if there
are any objects in a region or segment. In
other words the user is urged to move in the
direction where there is no vibration. The red
indicates where a motor is vibrating and
green indicates no vibration.

!
!

Page � of �14 40

5. Project Design and
Development

In this chapter I will discuss the high level
design for both the engineering and
computer vision components. There is no
visual user interface element in this project
besides interfaces for debugging purposes.

5.1 High Level Design for Computer Vision

The computer vision component is
implemented in C# using the C# version of
the Kinect API and EMGUCV C# wrapper for
integration of the OpenCV library. We have a
look at a high level abstraction of the system
in this section.

5.1.1 A Description of the Concepts

5.1.1.1 OpenCV - OpenCV is a library of
programming functions mainly aimed at real
time computer vision and is focused mainly
on real-time image processing.

5.1.1.2 Contour Detection - The edge
pixels are assembled into contours. The
largest contour is detected and is the only
Page � of �15 40

contour that is used to represent a BLOB/
object.

5.1.1.3 Minimum Bounding Area
Rectangle – A structure in OpenCV that
draws a rectangle at a certain angle that is
the smallest possible rectangle around the
BLOB or contour.

5.1.1.4 Kinect API – An application
programming interface that allows access to
the Kinect hardware and access to things
such as depth frames, colour frames and
depth pixel data.

5.1.2 Collision Detection – Binary Decision
Diagram -

Relationships Between Objects

KinectAPI > EMGU CV C# > GRAYSCALE >
CONTOUR DETECTION > BLOB
DETECTION > COLLISION DETECTION >
PATH FINDING

Page � of �16 40

1. Kinect captures frames

2. Convert image to grayscale OpenCV
image

3. Collision detection, typically refers to the
computational problem of detecting the
intersection of two or more objects. can be
considered as a compressed representation
of sets or relations.

4. Detect contours/blobs in frame Draw
minimum area bounding box detect
collisions in image segments.

Page � of �17 40

5.2 Low Level Design for Computer Vision

 

!
5.2.1 Capture Frames using an event
handler model
this.sensor.AllFramesReady +=
this.sensor_AllFramesReady;

Using the above code frames will be
grabbed when they are available from the
Kinect sensor i.e. the Kinect notifies the
system when a new frame is available.

Page � of �18 40

5.2.2 Convert Kinect Frame to OpenCV
image data structure

Image<Bgr, Byte> openCVImg = new
Image<Bgr,byte>(depthBmp.ToBitmap());

Image<Gray, byte> gray_image =

openCVImg.Convert<Gray, byte>();

Before we are able to make use of the
OpenCV library and its many functions it is
necessary to have a helper class that hosts
functions that convert between Kinect API
and OpenCV structures. Using an
ImageHelper.cs class that hosts these
functions I was able to convert between a
Kinect depth image to a grayscale OpenCV
image structure.

5.2.3 Detect contours/blobs

Contour<System.Drawing.Point> contours =

gray_image.FindContours(Emgu.CV.CvEnum
.CHAIN_APPROX_METHOD.CV_CHAIN_AP
PROX_SIMPLE,Emgu.CV.CvEnum.RETR_TY
PE.CV_RETR_EXTERNAL,stor);

Page � of �19 40

We need to detect the outermost contours
only and use that as out BLOB or object. A
few modes exist for contour detection such
as CV_RETR_LIST and CV_RETR_CCOMP
but we are only interested in setting the
mode to CV_RETR_EXTERNAL because we
would only like the outermost contour.

5.2.4 Draw minimum area bounding box

MCvBox2D box =
contours.GetMinAreaRect();

openCVImg.Draw(box, new

Bgr(System.Drawing.Color.Red),2);

We draw a minimum bounding box around
the contour detected above and this is
necessary so that we can calculate the real
world size in height and width as well as do
the collision detection.

5.2.5 Collision detection and path finding
algorithms

A collision detection function accepts a
bounding box and the closest distance.

Page � of �20 40

System.Drawing.Rectangle.IntersectsWith(S
ystem.Drawing.Rectangle)

Check If bounding box intersects with a
segment.

Return the array for each case where a
bounding box intersects with a segment.

5.2.6 Closest Distance Calculation
We get the closest distance for the BLOB
from the Kinect DepthPixel data structure
that stores the DepthPixels from the IR
sensor. Using the formula (X + Y * 640) we
can obtain the position of the depth value.

The way in which the closest distance is
calculated is a set of sample points are are
drawn in a BLOB bounding box and of those
sample points the minimum distance is
selected as the closest distance. This is
shown in the figure below. The closest
distance is then mapped to an intensity of
vibration force between 0 and 255.

!
!
!
Page � of �21 40

!
!
5.3 High Level Design for Engineering
5.3.1 A Description of the Concepts

5.3.1.1 Arduino SDK – Arduino Software
Development Kit is a library of code written
in C that can be used in code that you are
going to deploy to an Arduino micro-
controller, this library makes tasks such as
activating digital and analog pins easier.

5.3.2 Relationships Between Objects

Arduino Micro Controller > Arduino SDK >
Circuit Board > Vibration Sensors

Page � of �22 40

5.4 Low Level Design for Engineering

Page � of �23 40

5.4.1 Start Serial Input
Serial.begin(9600);

This code allows the Arduino to start
listening for connections on a
communications port at a specified baud
rate.

5.4.2 Read Each Char

Serial.nextInt();

Page � of �24 40

Wait For Serial
Connection

Read Data From
Serial Port

Vibrate Motor

This code allows for us to read each
intensity from the string that is sent via serial
communications.

5.4.3 Vibrate Motors

AnalogWrite (VibratorNumber,
IntensityOfVibrator);

This sends an instruction to vibrate the
specified vibration motor at a certain
intensity. 

Page � of �25 40

6. Testing, Analysis & Results
In order to assess the quality of the system I
have done some experiments that test each
of the subcomponents the system is
comprised of.

6.1 Experiment 1 - Distance Accuracy

!
This test was carried out to test the
accuracy of the virtual distance obtained
from the Kinect sensor in relation to a real
world distance. The distance was first
measured in the real world with tape
measure and thereafter with the Kinect
sensor. The object used that was to be
Page � of �26 40

detected was a washing basket, this object
was chosen because it had no holes or gaps
i.e. the detectable surface was a continuous.
The washing basket was placed at distances
ranging between 800mm and 1800mm.

!
The way in which the experiment was
carried out is by storing the virtual distance
every second for ten seconds and thereafter
obtaining the standard deviation for a
particular real world distance. This allows us
to see how far off the real world distance is
I'm comparison to the virtual distance.

Page � of �27 40

800 MM 1000 MM 1200 MM 1400 MM 1600 MM 1800 MM

800 1000 1200 1400 1600 1800

1 801 1001 1191 1399 1600 1809

2 803 1004 1200 1404 1607 1800

3 803 1001 1187 1404 1600 1819

4 803 1004 1195 1403 1600 1800

5 801 1001 1200 1399 1607 1809

6 805 1001 1195 1399 1600 1809

7 803 1001 1191 1404 1607 1800

8 801 1004 1195 1404 1600 1819

9 803 1001 1200 1399 1600 1800

10 801 1004 1195 1399 1600 1809

STDEV 8,60 8,37 20,76 8,83 12,12 32,34

STDEV_KIN 1,35 1,55 4,36 2,55 3,38 7,44

!
From the results obtained the lowest
standard deviation from the real world
distance is 8,60 mm and the highest
deviation is 32,34 mm. The converts to a
deviation of 3 cm which is not a large
amount to deviate with regards to the
system functioning. I consider the results to
be very accurate.

!
6.2 Experiment 2 - BLOB Detection and
Collision Detection

!
This test was carried out to check the BLOB
detection section of the system. Once
Page � of �28 40

detected it is checked which segment the
BLOB is colliding with. Three objects were
used in this experiment, a chair, a washing
basket, and a tiki head.

!
Initially the tiki head which spanned only one
segment was placed within each segment
and tested to check if it was detected
correctly and whether the collision per
segment was correct. The results obtained
were correct and the tiki head was detected
correctly in each segment.

!
The chair was placed spanning two
segments, tested to check if it was detected
correctly and whether both segments
intersected. The results obtained indicated
that the BLOB was detected correctly and
both segments were intersected.

!
The washing was also placed spanning two
segments, tested to check if it was detected
correctly and whether both segments
intersected. The results obtained indicated

Page � of �29 40

that the BLOB was detected correctly and
both segments were intersected.

!
Detection for all three objects was done at
distances ranging between 800mmm and
1800mm, in each case the BLOBs were
correctly detected and a correct vibration
intensity returned.

!
6.3 Experiment 3 - Testing The System
For Getting Closest Distance For Objects
of Different Sizes & Shapes
!

Page � of �30 40

This test was carried out to test the
accuracy of the system in obtaining the
closest distance for objects of various
shapes and sizes. The objects that I have
used for the test were a washing basket, a
chair, and a tiki head.

!
It must be understood that the way in which
the closest distance is determined is by
drawing a grid of sample points within a
detected BLOBs bounding area. The
distances are then obtained via the Kinect
API and a minimum distance is selected
from these sample points. The amount of
sample points selected can be increased by
adjusting the INTERNAL_BLOB_COUNT
variable.

!
With an initial INTERNAL_BLOB_COUNT
value of 3 the chair was placed atop the
washing basket and with the legs protruding
outwards facing the Kinect. The closest part
of the chair i.e. the legs, had a real world
distance of 1150 mm. Upon testing, the
sensor obtained a virtual distance of 1309
Page � of �31 40

mm. This distance was however not the
closest distance, it was the distance to a
peg that holds the legs together.

!
I then increased the value of the
INTERNAL_BLOB_COUNT to a 8 point
sampling grid. The chair remained at in the
same position still at 1550 mm. The results
obtained after adjusting the amount of
sampling points were much better and
realistic ranging between 1155 mm and
1159 mm.

!
6.4 Experiment 4 - Width of Objects Apart
!
This test was carried out to test what the
distance between objects need to be for
someone to move through comfortably i.e.
the distance between two objects for which
the centre vibrator does not vibrate.

!
Two chairs were used in the test and the
distance between them was adjusted until
they were closest together without the
centre vibrator motor vibrating to obtain the
Page � of �32 40

minimum distance. The opposite was true to
obtain the maximum distances, the chairs
were moved out as far as possible and being
able to be detected to obtain the maximum
distances. Each chair has a width of a 270
mm.

!

Page � of �33 40

The minimum distance remained constant at
700 mm and the maximum distance varied
as the distance from the Kinect sensor

increased, the results for the maximum
distances are tabulated below.

6.5 Experiment 5 - Frame Rate Impact

Page � of �34 40

Distance
From Kinect
(mm)

Maximum
Distance
Apart (mm)

900 1080

1100 1230

1300 1440

1500 1530

1700 1610

!
The Kinect allows for processing of unto 30
Frames per second (FPS) using an event
handler model. It is often desirable to use
the least amount of frames and
simultaneously have the system running
optimally. I started using the standard 30
FPS model and processing on all these
frames put a lot of strain the serial
communications port to the Arduino micro
controller. I decided to decrease the amount
of frames significantly and start increasing
up to a frame rate that allowed for the
system to function sufficiently and
simultaneously reduce the load on the serial
communications port of the Arduino. The
best frames per second was 6 FPS, anything
above 10 FPS provided too much strain on
the serial communications port. The reason
for this bottleneck is to be explored. 

Page � of �35 40

7. Limitations And Caveats
The Kinect does pose a few
limitations such as a minimum
distance of 80 cm vision at which
point anything closer than 80 cm
could not be detected. Kinect for PC
allows for a near mode which offers
a minimum distance of 40 cm. The
way in which this is accommodated
in the project is to use 90 cm / 900
mm as the new minimum and give
the user the opportunity to turn
before the Kinect gets to its
hardware minimum.

!

Page � of �36 40

8. Code Documentation
The project code is fully documented and
will be stored on a DVD media.

!
!

Page � of �37 40

Conclusion
In chapter 2 we explain the problem
statement and the possible solution
using technological methods.The
user requires a system that they are
able to wear that will navigate them
around objects in the real world.

The final system does take some
time to learn to use but after getting
used to it one can navigate through
the real world.

The system does what it was
intended to do. 

Page � of �38 40

Bibliography
!

[1] Kaehler, A., & Bradski, G.,(2008).
Learning OpenCV :Computer Vision
with the OpenCV Library. United
States of America.

[2] Jana, A. (2012). Kinect for
Windows SDK Programming Guide.
United Kingdom: Packt Publishing

[3] Karvinen, K., & Karvinen, T.,
(2011). Make: Arduino Bots And
Gadgets .United States of America:
O’reilly Media.

[4] EMGU CV Library
Documentation. (2012). Retrieved
From: http://www.emgu.com/wiki/
files/2.4.2/document/Index.html

Page � of �39 40

[5] WHO, Visual Impairment and
blindness. (2013, October). Retrieved
From: http://www.who.int/
mediacentre/factsheets/fs282/en/

[6] Mawhorter, P. Vision.py. (2012).
Retrieved From: https://
svn.cs.hmc.edu/svn/robotics/
Summer08/scribbler/slam/vision.py

Page � of �40 40

