

Extraction of Time and energy data from a digital pulse
processor

K. Jordaan
University of the Western Cape

Private Bag X17
South Africa

3538638@myuwc.ac.za

ABSTRACT
A brief overview of the importance of time-energy measurements
in the field of particle physics. And the uncertainty given by the
Heisenberg uncertainty principle to the measurements being
made. A discussion about the software which will be developed to
allow for the accurate extraction of time and energy data as well
as the analysis tools which will be developed to process this data.
Finally resulting in an experiment at iThemba Labs which this
software will be crucial in the verification of the detector process
being developed.

CCS CONCEPTS
• Computer systems organization → Embedded systems;
Data Acquisition → Analysis;

KEYWORDS
Digital Pulse Processors, Data Acquisition, Spectrum Analysis,
digital partial detector processing.

1 INTRODUCTION

C.W Fabjan defines particle detectors as “Particle detectors are
instruments used to measure the kinematic properties of particles
and quanta” [1]. The kinematic properties are mass, position
velocity and acceleration. These properties can be derived from
the characteristics of detection events. Namely the energy of a
particle and the time at which an event occurs.
Once an event has occurred it is registered in the Data Acquisition
(DAQ) system and stored on a computer via an interface program.
For this use case a software package called PAASS-LC [2] will be
used as it provides both acquisition and analysis frameworks.
However, this package is not designed for the specific use case of
time and energy signal retrieval from multiple detectors
simultaneously to register individual events. But rather it is
designed in a general manner that allows it to be extended by a
researcher to accommodate for their specific use case.
My Honors project will be the development of a tool using the
PAASS-LC frameworks to retrieve time stamped energy events
from the DAQ system. The data retrieved will allow for the time
calibration of the particle detectors. During the decay of various

radioactive isotopes, a gamma ray pair is produced which are then
emitted in opposite directions. This time calibration is essential in
the measurement of these decay events, as it allows for the
measurement of the position of the decayed particle with respect
to the Heisenberg uncertainty principle. This position with
coupled with the energy of the emitted gamma rays can be used
to determine the various other kinematic properties of the
particle.

2 COMPUTATIONAL DETAILS

2.1 Time Calibration

To calibrate the detectors a radioactive source is placed a
predetermined distance form either apposing detector. Then by
measuring the precise time of arrival of the gamma ray emitted
during a decay it is possible using newtons equations of motion to
calibrate the detector in time with respect to these positions.

Figure 1: Diagram Depicting the calculation of the position
of a radioactive point source in 1D space

If the time of an event at Detector A occurs at tA and the event at
Detector B occurs at tB it is possible to determine the position of
the particle between these detectors using Newtons Equations of
motion.
This which gives the Equation displayed in Figure 1:
𝑥 =

𝑣

2
 (𝑡𝐴 − 𝑡𝐵) Eq (1)

2.2 Energy Calibration

The energy calibration is accomplished by using a radiation point
source whose emitted energy spectrum is well defined.

Figure 2: An Example Energy Spectrogram using a variety
of radioactive sources [3]

Table 1: A table representing the energy levels of the
various photopeak’s in Figure 2.

Figure 2 (for explanatory purposes) is a great example of a
calibration spectrum. Using the values from [3] represented in
Table 1 the energy in keV will need to be mapped to the channel
number listed on the x-axis of Figure 2. This is accomplished by
plotting the graph of channel number to energy. Then finding the
line of best fit for this data. As the channel numbers n of a detector
are approximately proportional to the energy E being measured
the points on the graph will follow a quadratic relationship at high
energies. The calibration step is reduced to the process of solving
for the constants: a, b, c in the equation

𝐸(𝑛) = 𝑎 + 𝑏𝑛 + 𝑐𝑛2 Eq (2)

This can be accomplished using the method of chai-square defined
in [4].

𝑥2 = ∑ (
𝐸(𝑛) − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑛)

√𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑛)
)

𝑛𝑓

𝑛𝑖
 Eq (3)

Where ni is the first channel number, nf is the final channel
number, E(n) is the energy predicted by Eq (2), Expected(n) is the
expected energy at the channel number n.
Eq (3) is used by varying the constants a, b, and c until the value
produced by chi-shared is the closest to 1, making this an
optimization problem. Various optimization algorithms will be
implemented and tested including Global Search, Multi Start, and

Pattern search. They will be evaluated, and the optimal solution
will be used in the project.

3 FEATURES AND METHOD

3.1 Tool To Be Built

The resulting system will be built upon the PAASS-LC tool. It will
expand on both the acquisition and analytical frameworks
provided by the tool.

• It will use PAASS-LC as a data recording program to
interface with the DAQ.

• The program will then calibrate the energy spectrum
incident on the detectors using the method of chi-
squares in Eq (3).

• The subsequent events incident on the calibrated energy
channel will then be recorded with its precise time
stamp.

• Using this time stamp only the events occurring within
a specific time frame threshold will be recorded.

• Using Eq (1) the precise position of the events will be
determined, and the various other kinematic properties
will be determined from the position.

Initially this system will be built as a processer within the
PAASS-LC tool. Then a modern user interface will be
developed for ease.

3.2 Development Cycle And Goals
Even though there is a clear and well-defined problem which
needs to be developed, as with any software project there is still
space for the requirement to change and as such an Agile
approach towards the software engineering cycle will be followed.
With regular standup meetings with my mentor as we discuss the
changing nature of the project as we learn more about the
capabilities of the PAASS-LC framework.
The major goal of this project is to provide scientists with an easy
to use data acquisition and analysis system which they may use
for coincidence experiments but may easily be extended to various
other experiments as well.

4 USER REQUIREMENTS

4.1 Data Acquisition
This process is handled by poll2. A tool supplied by the PAASS-
LC framework and will not be built by this project.

4.2 Data Analysis
Poll2 will acquire data and store it in in a ldf file. UTKscan a tool
supplied by PAASS-LC will decode this file and supply the data to
my program. This raw data will be energy calibrated as discussed
in section 2.2 above. This calibrated data will then be will then be

gated with respect to time to find the relevant coincident events.
This coincident data will then be graphed using the ROOT
programming language.

4.3 Interface
This be a web application where a user may submit their ldf file.
They may also record a new ldf file using the poll2 tool. They will
then process this recording using the coincidence processer
written for this project. The resulting graphs will be displayed on
the interface and root files will be available to download to their
respective computers for further analysis.

4.4 Configuration
The UTKscan tool is configured using an xml file. The users will
be allowed to submit their own configuration files. Or users will
be allowed to use a default config file supplied by the interface.

5 REQUIREMENTS ANALYSIS

5.1 Functional Requirements
The user must be able to record radioactive decay events using the
PAASS-LC framework which is designed to be function using the
pixie16 data acquisition system. Data should be recorded using
NaI scintillator detectors. Data will need to be analyzed,
generating graphs which are both calibrated in energy and
showing only events which coincide with one another.

5.2 Configurations
Configuration files will need to be able to set

• The current channels to monitor for data.
• The current slot the pixie16 card is installed in.
• The parameters regarding the coincidence data being

analyzed.
• Time calibration parameters.
• Time window size
• Energy data to be used when generating coincidence

spectrograms
• Calibration data should be supplied
• Calibration constants. (Calibration will not be redone)
• Data required for the Calibration in section 2.2 above

5.3 Data Output

Graphs generated should be displayed on the interface. Such as:

• Spectrums for each detector individually
• Spectrums for coincidence data

As well as the data used for generating these graphs as a ROOT
file, which then may be downloaded to the experimenter’s
computer for further analysis.

6 PROJECT PLANS

Term 1:

• Documentation
• Gathering requirements
• Proposal

Term 2:

• Prototyping
• Delivery of proof of concept
• Working coincidence processor

Term 3:

• Web interface implementation
• Testing
• Feedback from stakeholders

Term 4:

• Implementation of feedback
• delivery of final code
• testing of code at IThemba labs for coincidence

experiment

7 APPLCATIONS

7.1 Nuclear Medicine

Positron emission tomography (PET) is a powerful and non-
invasive method of imaging physiological processes occurring in
the body. The time of flight techniques spoken about in this paper
are already being used in modern PET scanners as, “In the newer
generation of PET detectors the resolution of the tomographic
image is improved by determination of the annihilation point
along the line-of-response [5].” This method is powerful as it
reduces the noise along the line-of-response. This noise reduction
occurs as the double event from the single particle decay reduces
background noise as events recorded along the line-of-response
which do not occur within a certain time frame are ignored, thus
reducing the false positives caused by background radiation.

8 DESIGN

8.1 Data/Class Design
There are various data models used by both the web front end and
only a single data model used by the coincidence processor
8.1.1 Coincidence Processor Data Model. The eventProc model is the
most important, yet simplest, data object in the entire project. This
object has these following fields

{
 EnergyChannel : double,
 TimeInClockCycles : double,

Slot: int,
Channel: int

}
Both EnergyChannel, and TimeInClockCycles fields need
processing to be meaningful in the context of this processor code.
The energy field needs to be calibrated using the method described
in section 2.2. The time field needs to be calibrated using the
frequency of the XIA data logger, which in our case is a 250MHz
system. Which means that each clock cycle has a period of 4ns.
The Slot and Channel field keep track of the specific detector
being used as 2 detectors can be attached to different pixie-16
cards inserted into the same XIA cage.
8.1.2 Web Interface. Some metadata about an experiment is
recorded by the webpage and is structured according to the
metadata model.
{
 ExperimenterName: String,
 ExperimentDate: DateTime,
 ExperimentName: String,
 ExperimentShortDescription: String,
 ExperimentLongDescription: String,

}
8.1.3 Coincidence Processor Class Description. The Coincidence
processor consists of a single class for detecting coincidence data.
The Class Diagram can be found below.

Figure 3: Class Diagram depicting the functions and
variable of the NaICoincidenceProcessor class.

8.2 Web Front End Data Model
The web front end will have various data models, which describe
the various states of the stages of the application. The first will be
the model to manage the configuration, datafile pair.
{

ConfigurationFilePath : string,
DataFilePath : string,
DestinationFilePath : string,
State : IState,

}
The DataFilePath is the location of the data file, after being
uploaded to the server, which is the raw data file that will be
processed. The ConfigurationFilePath is the location of the
configuration file, after being uploaded to the server, which is
responsible for telling PAASS-LC which processors to be used.
The DestinationFilePath will be used to tell PAASS-LC where to
store the generated root files. The state maintains the state of the

current run of the PAASS-LC program, the state field calls the
IState object which looks like
{
 IsRunning : boolean,
 HasError : boolean,
 OutputMesasge : string,
}
IsRunning tells the front end if the PAASS-LC program is still
executing. HasError tell the front end if the PAASS-LC program
has run into an Error and output message tells the front end the
messages given by the PAASS-LC program.

8.3 Architectural Design
The Architectural design of this application is built to facilitate
the flow described by the interface design. The project will be built
in two parts.

8.3.1 The Coincidence Processor. The coincidence processor will be
built into PAASS-LC as all other processor codes are for this
framework. This allows me to leverage the power of this Package
such as reading captured data, and easily plotting graphs.
As PAASS-LC sends each individual recorded event to our
processor code we will need to have an external store of events to
accumulate all events which are found.
After this point it will become possible to search for events which
are in coincidence. An event in coincidence must be an event
found at exactly 2 detectors and these 2 events must arrive at each
detector within a specific time window of one another. The Time
window as well as the detectors pairs being monitored should be
set in the configuration file.

8.3.2 The Web Front End. The web front end will be used to
facilitate the easy flow of data from capture to processing and
finally to the retrieval of human readable data. The front end will
do absolutely no processing.
The web front end will use a NodeJS, express, webserver to allow
an experimenter to upload a configuration file as well as the raw
experiment data. NodeJS also allows for a program to execute
programs using Linux terminal commands. This is important as it
will allow for the PAASS-LC framework to be called. It also allows
for files to be read and be sent back to client devices.
I chose to have a Web front end as it allows many experiments to
interact with DAQ stack using their own computers while also
making it possible for physicist with a minimal understanding of
the Linux environment to still interact with this tool.

8.4 Interface Design
The usage of the DAQ stack Coincidence processor will follow a
logical flow. This will flow in the manner described in number
form below. The below flow is related directly to using the
coincidence processor.

1. The user will upload the configuration and data files.
2. PAASS-LC will call the corresponding processors

specified the configuration file.

3. When the coincidence processor is called the events
coming from the detector will be stored in the event
store component.

4. once all the events from the current run has been stored
in the event store the time coincidence processor will
find all events which are in coincidence.

5. PAASS-LC convert the plots generated in the
coincidence processor to a .root file which can then be
downloaded from the processed file download
component.

6. While the user is waiting the web, front end will display
the loading component to indicate the file is currently
being uploaded or the file is currently being processed

8.5 Component Level Design
The DAQ stack Tool will be built using the PAASS-LC framework
to do coincidence detection. This will require the development of
a small set of components to be developed. This will be both for
the core coincidence detector code, as well as the web front end.

1. Coincidence processor
a. Event store
This contains information about each of the events
given by the particle detector.

b. Time coincidence processor
This determines if 2 events have arrived at the
different detectors in coincidence

2. Web front end
a. Configuration, and data file upload
This tells PAASS-LC what the data is and how to
process it.

b. Run Processor
This component initiates PAASS-LC using the
information provided in a.

c. Processed file Download
This allows the end user to download the processed
data files in a .root file format

d. Loading component
This is used to block the user from initiating
another execution of the PAASS-LC program while
simultaneously informing the end user that the
PAASS-LC program is currently processing their
data.

9 PROTOTYPE

9.1 Processor Code
For this project a prototype has been developed to demonstrate
the ability of the coincidence processor. This processor takes data
from precisely 2 detectors and searches for 2 events which have

been detected in coincidence. It then plots the energy spectrum of
the coincidence events using the energy given by the first
detector.

9.2 Hardware
The XIA system is setup to use the pixie16 data acquisition
modules. These modules record data coming from 2 NaI
Scintillator detectors. These detectors monitor the Gama rays
emitted during the radioactive decay of Co60

9.3 Software
A spectrogram is generated for each detector which can be found
in Figure 4.a and 4.b and a coincidence spectrogram is generated
from events which occurred within a certain time window of each
other. This can be found in Figure 4.c
A positive outcome for this experiment is that a spectrogram with
the same shape as that of either detectors but also with having
fewer events than either detectors would have respectively.
For this prototype I noticed an issue with the way that the PAASS-
LC framework was interpreting data that was coming from our
particle detector. This led me to investigate the issue and
ultimately, I got in contact with the developers of this program
and managed to fix the issue and this bug was fixed in the latest
published version of PAASS-LC.

Figure 4.a: A energy spectrogram for the detector to the left
of the radioactive source. (counts / channel)

Figure 4.b: A energy spectrogram for the detector to the
right of the radioactive source. (counts / channel)

Figure 4.c: A energy spectrogram for the coincidence events
happening between Figure 4.a and Figure 4.b.
(counts / channel)

For my prototype an experiment was run in the physics building.
The experiment resulted in the creation of Figures 4.a and 4.b. Our
coincidence code was able to generate Figure 4.c using a timing
window of 1ms and using the energy channel defined by the
detector attached to ch1. Therefore, the pattern of the
spectrogram follows that of Figure 4.a.

10 IMPLEMENTATION

10.1 Software And Hardware Requirements
10.1.1 Software for processor code. The software tools used for this
project is extensive. The main framework used is PAASS-LC
which relies on the root programming language developed at cern.
Root is used as “It provides all the functionalities needed to deal
with big data processing, statistical analysis, visualization and
storage.” [6] Root is built using make and is written in c/c++,
therefor the gcc compiler is required. It uses the environment
scripts to manage the installed system therefor these environment
variables were sourced at boot. PAASS-LC is distributed through
GitHub therefor the git version control tool is needed. PAASS-LC
is built using CMake and compiled using make. PAASS-LC
communicates with our pixie-16 system using a PLX controller
therefor a PLX SDK is needed. The developer of PAASS-LC
supplies the drivers for this system through his GitHub profile.
The PLX controller service is managed using the popular Linux
tool systemd. The XIA api tool is used to communicate with the
pixie-16 system through the PLX controller and is used with the
xia firmware.
For the
10.1.2 Software for web interface. The web interface is built using
the react web framework. It is written using the typescript
language. Material-UI is used to provided pre-styled web
components such as buttons and text fields. Storage is provided
by a json file. Both the frontend and backend are hosted using
node server. Communication between the frontend and backend
is managed using the axios library. Graphs are visualized using
the plotly.js plotting library. File uploads are allowed using react-
dropzone. The frontend is designed to be viewed using the Firefox
web browser. Styling is accomplished using css. The backend api
is hosted using the express web framework. Filesystem
management is handled by the fs package and time is managed by
the moment package. React router is used to manage the multiple

webpages, as react is designed for single page web apps. All code
written for this project is done using the Visual Studios Code IDE.
All code is shared using git.
10.1.3 Hardware. The processing code, backend and frontend is
hosted using a server located in the MANDELA lab. The server is
connected to the pixie-16 system using a PLX controller. The
pixie-16 system receives signals from 2 NaI scintillator gamma
detector. A High Voltage power supply is used to bias the
detectors. A pulsar is used for testing and produces idealized
waveforms for signals coming from the NaI detector. An
Oscilloscope is used to study the waveform of the signal coming
from the NaI detectors to ascertain the properties required by
PAASS-LC for signal processing.

10.2 Functions Methods And Classes
10.2.1 Processor Code. The Event model described in section 8.1.1 is
implemented in the header file NaICoincidenceProcessor.hpp. All
coincidence processing occurs in the NaICoicidenceProcessor.cpp
file. As both files are experiment processor codes, they are stored
in the experiment processor directories within PAASS-LC. The
histograms for the start, stop detectors and the coincidence data
is registered with root in the DeclarePlots method. The processor
tells PAASS-LC that it is expecting data from a NaI scintillator
detector in the SetAssociatedTypes method. All processing is done
in the Process method. The event data is given by PAASS-LC
using a vector. Therefor the events from the start and stop
detectors is separated into 2 vectors of type eventProc. Then a
loop is used to get elements from both vectors and the time
difference is compared. During the comparison stage the data is
written to the root histograms as well as a text file which is
displayed in the web interface.
10.2.2 web interface. As the project uses the react framework it
follows the standard react file structure. Images are stored in the
asset’s directory. The process, display and history webpages are
stored in the module’s directory. Components which are generic
between pages are stored in the components directory and
components which are specific to a page are stored in the same
directory as its corresponding module. File upload for data files
and the configuration panel for PAASS-LC are done in the process
webpage. After the backend processes the data file. Data will be
added to the history page. The history page lists all past
experiments and a specific experiment with their metadata can be
visualized in the display page. In the history page all experiments
are displayed in Cards displaying ExperimenterName,
ExperimentDate, and ExperimentShortDescription, as well as the
plot for the histogram recorded for that experiment. The
histograms are rendered by the component histogram. The
visualize page is used to display all the data available on the
history page but also shows the ExperimentLongDescription and
allows the user to download the processed root file aswell as the
raw data file used to generate it. The frontend and backend
communicate using HTTP post and get requests. All
communication from the frontend is facilitated by a services class
called communication.ts located in the services directory.
10.2.3 backend. All endpoints for express is handled in the index.ts
file. Each operation is managed by separate endpoints. The
endpoint processExperiment is used to run the coincidence
processor code. It executes PAASS-LC and stores the data in the

processed directory. All raw experiment data is stored in the
experimentData directory. All metadata for the coincidence data
is stored in the DB.json file. Interactions with the file system occur
using the fileManagement class and interactions with the DB.json
file occur using the storage class.

10.3 Limited Testing
10.3.1 Processor Code. To test CFD triggering we plotted the start
vs stop times of our events which were in coincidence to measure
how well the technique would benefit the project.

Figure 5.a: Start time vs stop time. Start time increasing to
the left. Stop time increasing upward. Experiment was run
for 3000 seconds. Using CFD triggering.

Figure 5.b: Ideal graph for the Start time vs stop time. Start
time increasing to the left. Stop time increasing upward.
Experiment was run for 10 nano seconds. Using CFD
triggering. [7]
As the Figure 5.a is incredibly linear while Figure 5.b is less so
proving that there is an issue using CFD triggering. This graph
shows us that there is likely a feedback loop occurring in the
system. Under closer inspection it was found that the signal traces
recorded by PAASS-LC we far too short. The trace was not long
enough to fall back to the ground state. Due to its long signal
decay time of the NaI detector. As the entire trace length is needed
for the CFD algorithm to model the trace, it was decided that we

use simpler leading-edge triggering despite its lower time
resolution.
A Coincidence experiment was run, and a spectrogram of the start
time subtracted from the stop time spectrograph was generated.

Figure 6.a: Start time subtracted from stop time. Time
increasing to the right. Amount of start time subtracted
from stop time increasing upwards.

Figure 6.b: Start time subtracted from stop time. Time
increasing to the right. Amount of start time subtracted
from stop time increasing upwards.
While a gaussian distribution was expected figure 6.a clearly
shows that there is an issue with the data being collected from the
detectors. The trace length was subsequently lengthened, and the
leading-edge trigger threshold was optimized during the
acquisition phase. This new experiment data is then processed
resulting in the gaussian distribution observed in Figure 6.b.
“Because of the usually unknown processing times of the
electronic components, it can hap-pen that the logic signals do not
reach the coincidence unit simultaneously, even though the two
gammas reached the detectors at the same time.” [8] As the
gaussian is not centered at zero it shows that there is a signal delay
between the start and stop detectors of approximately 320 ns.
Therefor coincidence data can now be processed. Using this
known time delay.
10.3.2 Web Interface. The web interface is far less complicated and
only requires testing the file upload. This is done by uploading
configuration files of incorrect file formats. The graphs generated
by the processing code will always generate data in a standard
format and therefor testing the plotting of data files will not be
required. Also, the coincidence processor code is run both
manually as well as using the web front end to verify consistency
between the 2 methods.

11 CONCLUSIONS
The tool that we will be developing has numerous applications in
the fields of not only particle physics but also Nuclear medicine.
This tool will be developed throughout the year and will be tested,
and its operation be verified in an experiment run at iThemba labs
later this year. It will consist of the modification of an existing
widely used scientific tool. It consists of interfacing with
embedded systems, and FPGA’s. Various modern Optimization
Algorithms will be implemented and studied throughout this
development cycle. The interface will use modern web
frameworks to build a high performance and easy to use fully
capable digital data acquisition system. The prototype created for
the initial phases of this project provides promising results with
respect to the viability using the hardware stack for coincidence
experiments. Future experiments and optimization should
improve this method greatly such as improved timing resolution
of the detector and higher frequency data acquisition hardware.

References

[1] C. Fabjan, "Detectors for elementary particle physics," Cern,
Geneva, Switzerland, 1994.

[2] S. Paulauskas, "PAASS-LC," 13 February 2018. [Online].
Available: https://github.com/spaulaus/paass-lc/releases.
[Accessed 25 March 2019].

[3] E. Prince, "Well Defined Energy emmissions for various
isotopes," in International Tables for Crystallography, United
States, Wiley, 2004.

[4] P. Siegal, "Data Analysis, Calibration of Equipment," in
Radiation Biology Lecture Notes and Lab Experiments,
California, California State Polytechnic University, 2016.

[5] M. Silarski, "A novel method for calibration and monitoring
of time synchroni-zation of TOF-PET scanners by means of
cosmic rays," Institute of Physics, Jagiellonian University,
Poland, 2013.

[6] CERN, "Root," Cern, 02 February 2019. [Online]. Available:
https://root.cern.ch/. [Accessed 08 September 2019].

[7] S. V. Paulauskas, M. Madurga, R. Grzywacz, D. Miller, S.
Padgett and H. Tan, "A digital data acquisition framework for
the Versatile Array of NeutronDetectors at Low Energy
(VANDLE)," Nuclear Instruments and Methods inPhysics
Research Section A: Accelerators, Spectrometers, Detectors and
associated Equipment, p. 25, 2013.

[8] K. Panda and T. Gregor, "Measuring the time spectrum,"
Schuler Labor, 2013.

