Sentiment Detection

The Team

Title	Name	
Researcher	Loyiso Jiya	
Co-researcher	Dayaan Sataar	
Supervisor	Mehrdad Ghaziasgar	
Co-supervisor	Reginald Dodds	

Background

What is sentiment detection?

- Attempts to determine the feeling conveyed by any text
- Can be positive, neutral, negative, or range
- Text can be documents, forum posts or posts on social media
- AKA sentiment analysis, opinion mining, opinion extraction

Why sentiment detection?

- Companies need feedback
- conducted market research, focus groups, etc.
- Inefficiency, time-consuming and costly
- reviews after service is issued (i.e. MTN customer service)
- reviews when given are often bias (mostly negative)

More Background

- Exponential growth of social media means free data
- Unbiased, unfiltered, and subjective to users
- Praise or criticisms of companies, political and social commentary etc.
- Gather and analyse data on a large scale
- Of these Twitter has about 300 mil users per month [1]
- Twitter is more favourable
- Twitter has open API
- Dell and Amazon use Twitter sentiment detection[2]
- Locally, Dr Ghaziasgar supervised an employee of one of the telecoms companies

Related Work

Authors	Dataset	Pre-processing	Technique	Feature Selection	Feature Extraction
Fouad et al. [3]	STS, Sanders and HCR	Tokenizing, removing links and emoticons	SVM, Linear regression, Naïve Bayes, and Majority Voting Ensemble	Information Gain	BoW, PoS tagging
Zheng et al. [4]	Online reviews from Chinese ecommerce website	None mentioned	SVM	None Mentioned	TF-IDF N-PoS-Grams
Jiaqiang and Xiaolin[5]	STS, SemEval2014, SS-Twitter, SE-Twitter, STS-Gold	None Mentioned	Random Forests, Naïve Bayes, SVM and Logistic regression	None Mentioned	Prior polarity, N-grams
Al-Smadi et al. [6]	SemanticEavaluation Workship 2016 (SemEval-ABSA16)	Remove unwanted special and Latin characters.	RNN and SVM	None mentioned	N-grams, PoS, Semantic features, word2vec
Zainuddin et al.[7]	STS and Sanders	Remove: hashtags, links, usernames, punctuation marks etc.	SVM	PCA, LSA and RP	PoS
Lauren et al. [8]	Sentiment Polarity Dataset v2.0	None mentioned	Logistic regression	PCA	ELM and word2vec

Our Contribution

- Compare feature extraction and feature selection techniques
- Use residual neural network(ResNet) opposed to RNN and CNN
- Seldom used XGBoost
- Implement UI

User Requirements

- From focus group within the research group
- Single or batch tweets as input
- Minimalistic user interface
- Coherent display of detected sentiment
- Efficiency (no training on host device)

Requirement Analysis

- Stanford Twitter Corpus dataset
- Detect sentiment from given text (string or csv with multiple strings)
- Present detected sentiment to the user (graphically)

Visual Layout

Project Plan

References

- 1. Investor.twitterinc.com. Quarterly results. 2018. [Online]. Available: https://investor.twitterinc.com/financial-information/quarterly-results/default.asp
- 2. M. Oussalah, F. Bhat, K. Challis, and T. Schnier, "A software architecture for twitter collection, search and geolocation services," Knowledge-Based Systems, vol. 37, pp. 105–120, 2013.
- 3. M. M. Fouad, T. F. Gharib, and A. S. Mashat, "Efficient twitter sentiment analysis system with feature selection and lassifier ensemble," in International Conference on Advanced Machine Learning Technologies and Applications. Springer, 2018, pp. 516–527.
- 4. L. Zheng, H. Wang, and S. Gao, "Sentimental feature selection for sentiment analysis of Chinese online reviews," International journal of machine learning and cybernetics, vol. 9, no. 1, pp. 75–84, 2018.
- 5. Z. Jianqiang and G. Xiaolin, "Comparison research on text preprocessing methods on twitter sentiment analysis," IEEE Access, vol. 5, pp. 2870–2879, 2017.
- 6. M. Al-Smadi, O. Qawasmeh, M. Al-Ayyoub, Y. Jararweh, and B. Gupta, "Deep recurrent neural network vs. support vector machine for aspect based sentiment analysis of Arabic hotels reviews," Journal of Computational Science, vol. 27, pp. 386–393, 2018.
- 7. N. Zainuddin, A. Selamat, and R. Ibrahim, "Hybrid sentiment classification on twitter aspect-based sentiment analysis," Applied Intelligence, pp. 1–15, 2018.
- 8. P. Lauren, G. Qu, J. Yang, P. Watta, G.-B. Huang, and A. Lendasse, "Generating word embeddings from an extreme learning machine for sentiment analysis and sequence labelling tasks," Cognitive Computation, vol. 10, no. 4, pp. 625–638, 2018.

Questions...

