

Maggie Chimbwanda

Supervisor: Professor I. M. Venter

Co-Supervisor: Dr W. D. Tucker

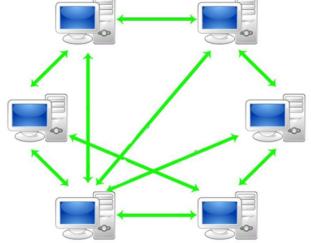
Contents

- Introduction
- Simulation approach
- Methodology
- Challenges
- Demo

Introduction

To revisit the project aim, the aim is to evaluate Mesh routing protocols for voice such as:

- AODV (ad hoc on demand vector),
- DSR (demand source routing),
- OLSR (optimized link-state routing),


using **UDP** (user datagram protocol) in disaster scenarios.

Introduction (2)

The aim is to simulate some scenarios with different numbers of nodes, permutations of nodes, and different radii of the disaster area.

The network topology being used is a peer-to-peer topology, since:

- It is easy to deploy.
- it offers promising solution to the challenges of information-sharing in disaster events.

Introduction (3)

And then finally the aim is to test the performance metrics:

- throughput,
- delay, and
- network load

on these simulated networks using a simulation tool used is **OPNET** (optimized network evaluation tool)

Simulation Approach

Keep every variable static except the aspects being tested.

Static variables:

- Protocols (AODV, DSR, OLSR, UDP)
- Throughput, Delay, Network load
- Mobility rate
- Simulation time
- Application

Simulation Approach (2)

Dynamic variables

- Number of nodes
- Radius size
- Permutations of the nodes
 - E.g. 4 node permutations could be:
 - 3 cellphones & 1 laptop, or
 - 2 cellphones & 2 laptops, or
 - 1 cellphone & 1 laptop, etc.

Methodology

Scn.	Parameters							
	No. of	Routing	Other	Performance	Simulation	Mobility rate	Simulation	Application
	nodes	protocols	protocols	metrics	radius		time	
1	4	AODV, DSR & OLSR	UDP	Throughput,	500m x 500m	5 meters/sec	10 min	Voice
				delay,				
				network load				
2	7	AODV,	UDP	Throughput,	1000m x 1000m	5 meters/sec	10 min	Voice
		DSR &		delay,				
		OLSR		network load				
3	10	AODV,	UDP	Throughput,	2000m x 2000m	5 meters/sec	10 min	Voice
		DSR, &		delay,				
		OLSR		network load				

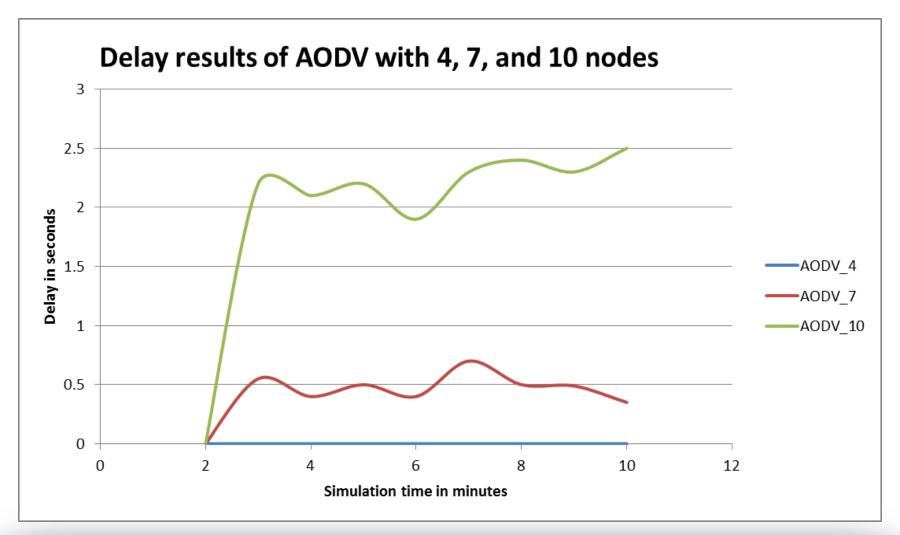
Methodology (2)

Scenario	Number of nodes	Permutation
1	4	2 cellphones & 2 laptops
2	7	3 cellphones, 2 radios, & 2 laptops
3	10	4 cellphones, 2 radios, & 2 laptops

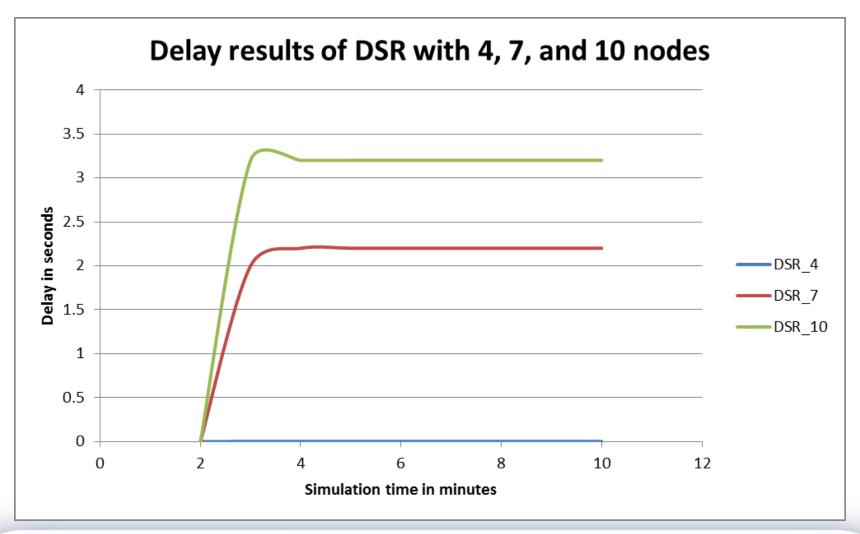
Challenges

Routing protocol	Problem	Occurrence	Solution
DSR	Failed to simulate under video application.	Number of nodes is greater than 4	Settled with implementing with voice application only

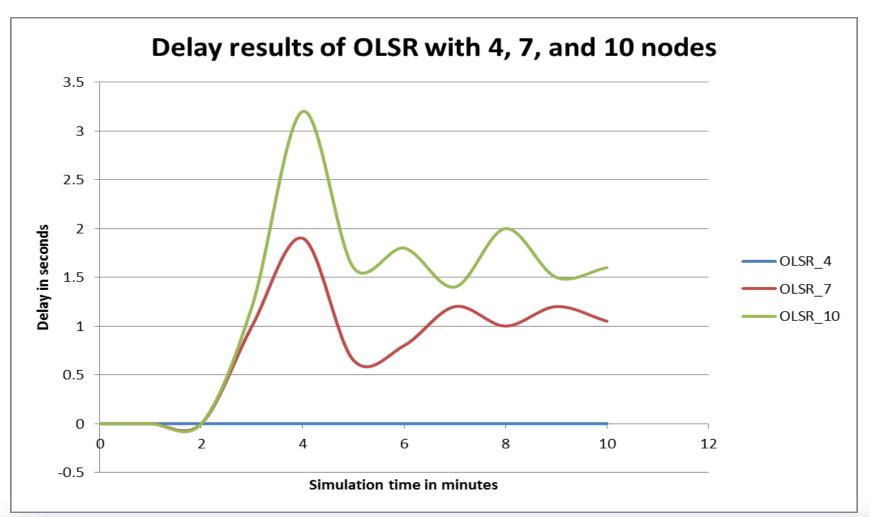
Timeline


References

- Ali, S., & Ali, A. (2009). *Performance Analysis of AODV, OLSR, and DSR in MANET.* Retrieved 01 18, 2011, from essay.se: http://www.essay.se
- DiMarco, C. (2011, 01 11). *Utilizing Voice Broadcasts in Disaster Scenarios*. Retrieved 03 12, 2011, from TMCnet: www.tmcnet.com
- OPNET Technologies Inc. (2009). *OPNET Support Center.* Retrieved 06 15, 2011, from www.opnet.com
- Rahman, A., Islam, S., & Talevski, A. (2010). *Performance measurement of various routing protocols in ad-hoc network.* Retrieved 02 21, 2011
- Arnold, J. L., Levine, B. N., Manmatha, R., Lee, F., Shenoy, P., Tsai, M. C., et al. (2004, 07-09). *Information-sharing in out-of-hospital disaster response: The future role of information technology.* Retrieved 08 15, 2011, from Prehospital and Disaster Medicine: http://pdm.medicine.wisc.edu
- Sajjad Ali, Asad Ali. "Performance Analysis of AODV, OLSR, and DSR in MANET." essay.se. 2009. http://www.essay.se (accessed 01 18, 2011).
- Yamsani Ravikumer, Sarath Kumar Chittamuru. "A Case Study on MANET Routing Protocols over HTTP and TCP." essay.se. 06 2010. http://www.essay.se (accessed 01 25, 2011).
- MOTOA4, & Motorola Inc. (2008). Mission Critical Portfolio. Retrieved 06 18, 2011

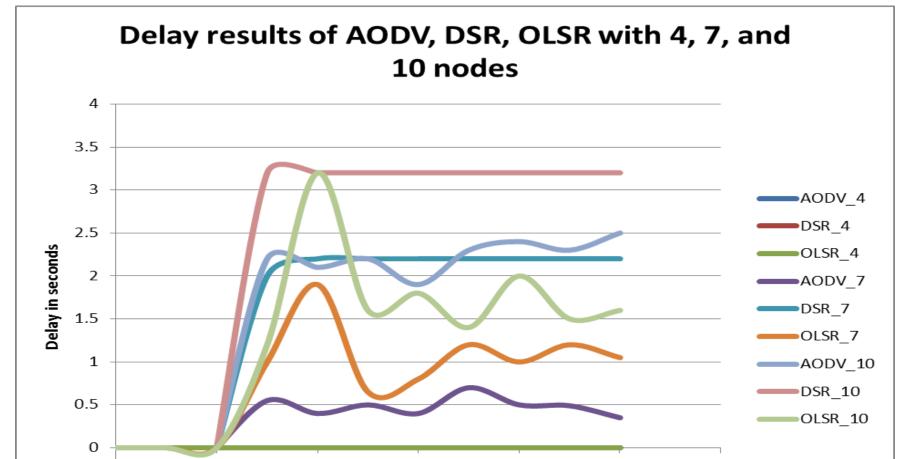

Demo

- Simulate a scenario
- Apply variables to nodes
- Comparison of results


Example of delay results

Example of delay results (2)

Example of delay results (3)



Example of delay results (4)

2

-0.5

4

6

Simulation time in minutes

8

10

12