Evaluating the performance of Mesh network protocols for disaster scenarios

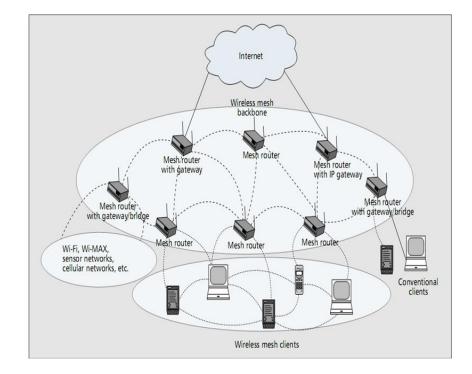
Maggie Chimbwanda

Supervisor: Professor I. M. Venter Co-Supervisor: Dr W. D. Tucker

Contents

Mesh network introduction

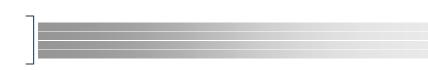
Project review


- Term 1 user requirements
- Term 2 prototype
- Term 3 simulation testing
- Test results analysis
- Comparative analysis
- Project conclusion
- Future work

Introduction

Wireless Mesh Networks

- A group of self-organized and self-configured mesh clients and routers interconnected via wireless links.
- Application Emergency and disaster networking.



Introduction (2)

- Project Aim
 - Evaluate the routing protocols:
 - AODV (ad hoc on demand vector),
 - DSR (demand source routing),
 - OLSR (optimized link-state routing), when using UDP (user datagram protocol).
 - Test which is the best routing protocol for these applications under the performance metrics throughput, delay, and network load.
- Performance Metrics
 - □ **Throughput** tests the total amount of data that reaches the receiver (from the source) compared to the time taken by the receiver to receive the last packet.
 - **Delay** tests the time taken by packets to pass through the network.
 - □ **Network Load** test the amount of data traffic carried by the network.
- Simulation Tool
 - OPNET (optimized network evaluation tool)

User requirements & analysis

- Gathered data from
 - Users Campus protection Service (CPS).
 - Documentation.
- Users want:
 - To communicate through voice and video.

User requirement	Application required	Transport protocol used
Voice	Voice over IP	User datagram protocol (UDP)
Video	Video conferencing	User datagram protocol (UDP)

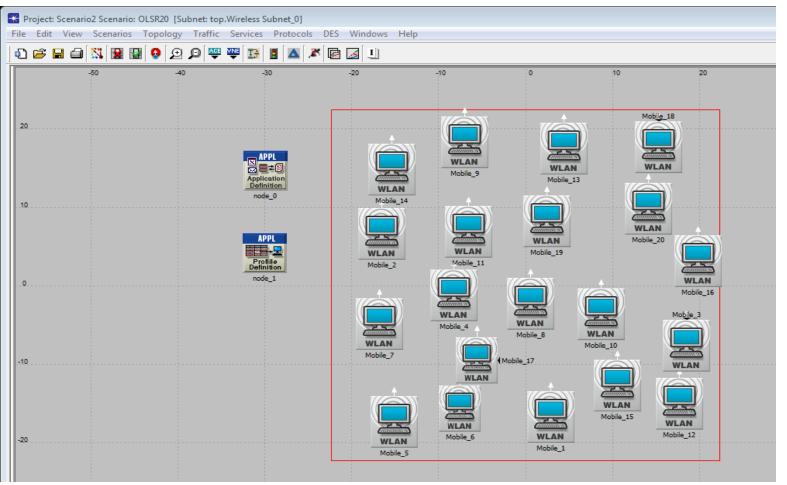
Prototype

A small scale preliminary study conducted before a large-scale quantitative project is implemented.

Checks the feasibility.

Improves the design of the whole project.

Acquaint with OPNET software.


Scenario	Parameters												
	No. of nodes	Routing protocols	Transport protocol	Performance metrics	Simulation radius	Mobility rate	Simulation time						
Pilot	4	AODV, DSR, OLSR	UDP	Throughput, delay, network load	100m x 100m	5 meters/sec	10 min						

Simulation testing


Exp	Param	eters						
	No. of nodes	Routing protocols	Transport protocol	Testing parameters	Radius	Mobility rate	Simulation time	Application
1	4	AODV, DSR, OLSR	UDP	Throughput, delay, network load	500m x 500m	5 meters/sec	10 min	Voice
2	7	AODV, DSR, OLSR	UDP	Throughput, delay, network load	500m x 500m	5 meters/sec	10 min	Voice
3	10	AODV, DSR, OLSR	UDP	Throughput, delay, network load	1000m x 1000m	5 meters/sec	10 min	Voice
4	20	AODV, DSR, OLSR	UDP	Throughput, delay, network load	2000m x 2000m	5 meters/sec	10 min	Voice
5	40	AODV, DSR, OLSR	UDP	Throughput, delay, network load	2000m x 2000m	5 meters/sec	10 min	Voice

Simulation in OPNET

Test results analysis

Global – from the whole network.

- Individual experiments.
- Testing parameters
 - throughput -> high means a good outcome, whereas for,
 - delay and
 - network load -> low means a good outcome.

Comparative analysis

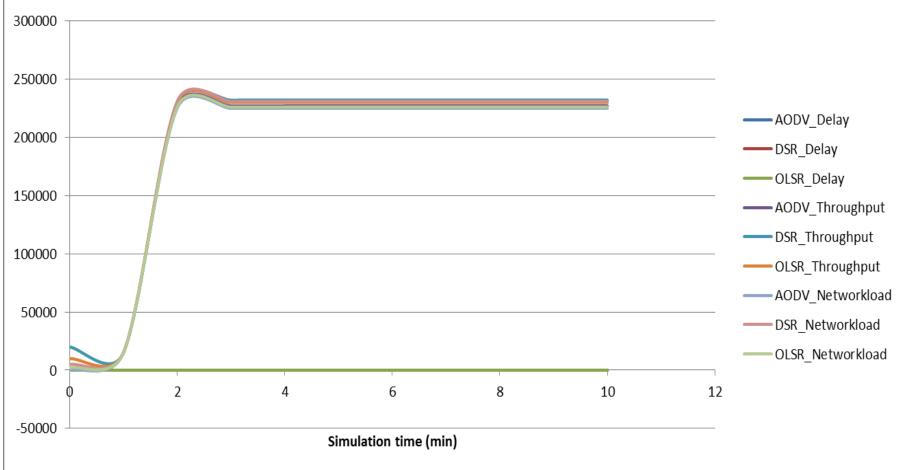
First – look at average values for each protocol

Second - look at performance of all three protocols for each experiment.

 To get an idea of how scalability affects the protocols performance.

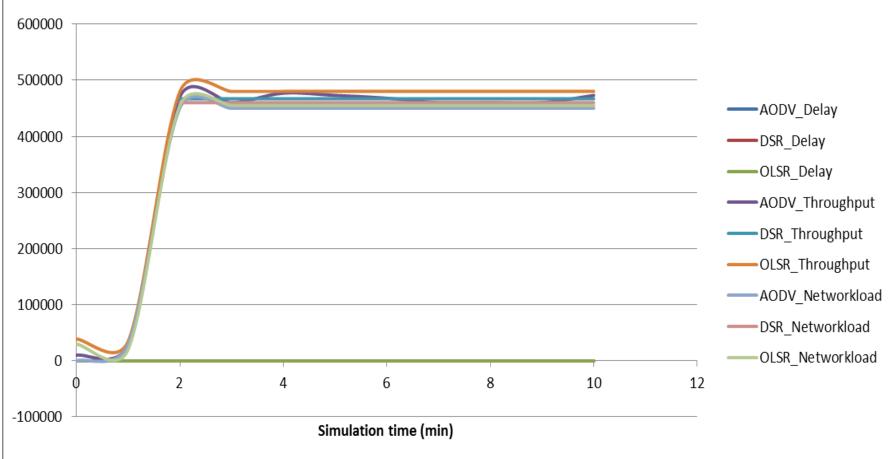
Third – look at performance of all experiments under each testing parameter.

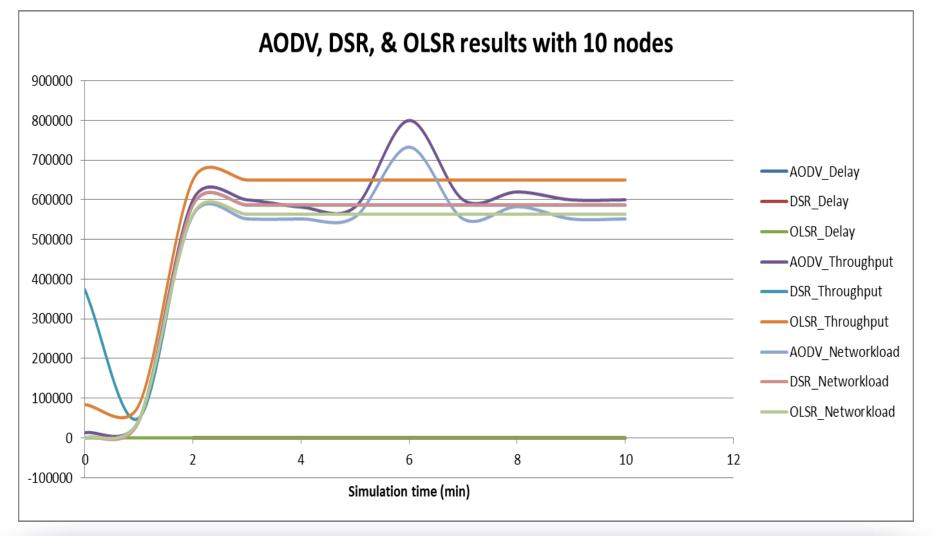
 To get an idea of the performance of each protocol under that specific metric.



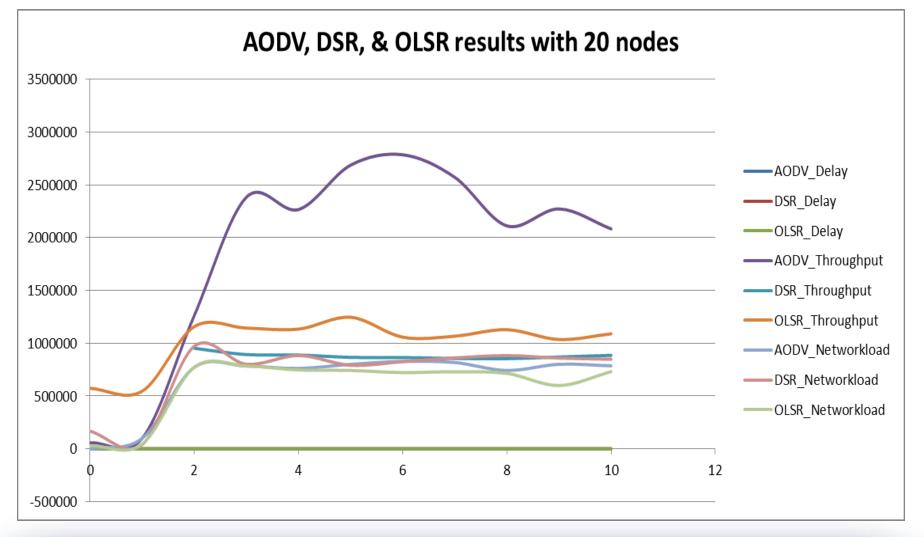
Results

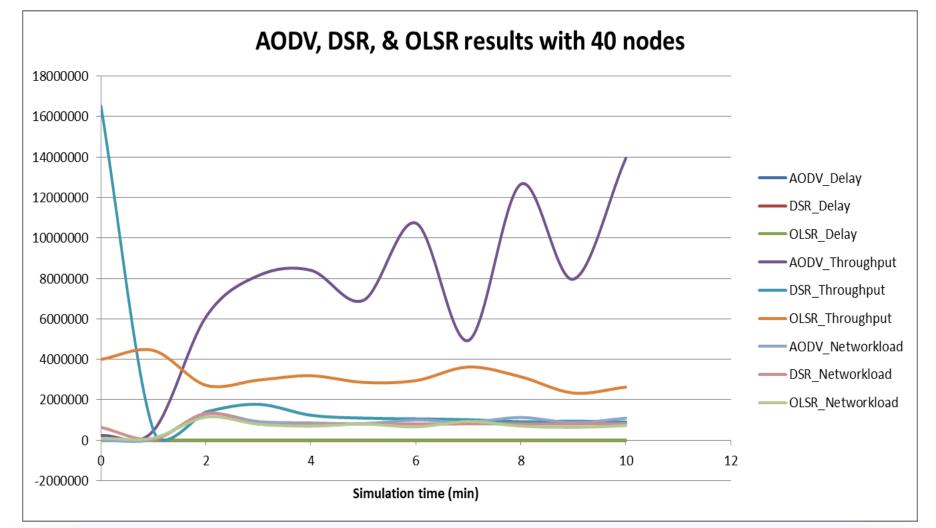
Nodes	Parameters	AODV	DSR	OLSR		
4	Throughput (bit/sec)	227,456	231,509.33	231,392		
	Delay (sec)	0.0004436	0.0002972	0.0003597		
	Network load (bit/sec)	225,056	230,677.33	225,056		
7	Throughput (bit/sec)	461,248	464,426.66	480,384		
	Delay (sec)	0.0007877	0.0003839	0.0007509		
	Network load (bit/sec)	450,112	464,661.33	450,208		
10	Throughput (bit/sec)	603,584	586,986.66	643,520		
	Delay (sec)	0.0015	0.000975	0.0008170		
	Network load (bit/sec)	562,688	587,221.33	569,280		
20	Throughput (bit/sec)	2,881,698.66	876,216	1,206,578.66		
	Delay (sec)	2.369853	5.765952	2.087846		
	Network load (bit/sec)	849,645.66	892,045.33	763,914.66		
40	Throughput (bit/sec)	12,661,229.33	4,153,493.33			
	Delay (sec)	4.78048	12.351543	3.211828		
	Network load (bit/sec)	1,156,144	819,378.66	943,986.66		

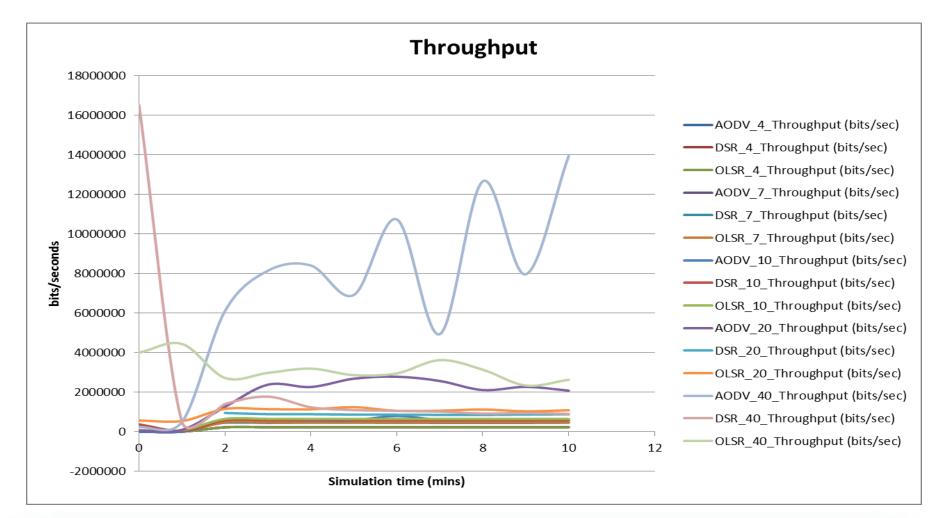


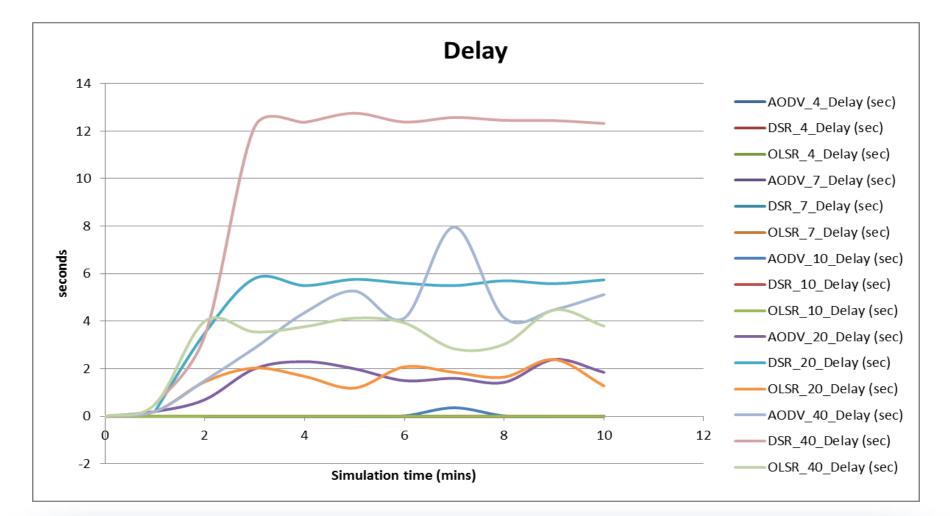


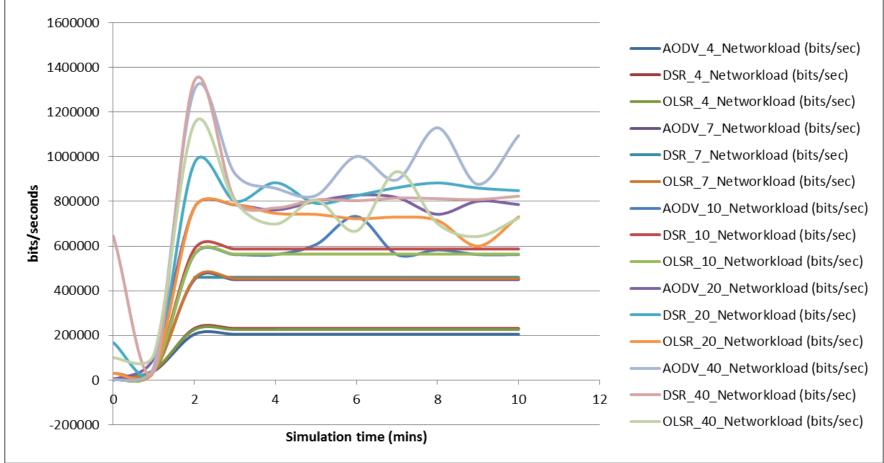
Results (3)


AODV, DSR, & OLSR results with 7 nodes









Network load

Project conclusion

- Overall experiment results AODV showed better performance in terms of throughput and network load and DSR performed better in terms of delay when using UDP.
- But for individual experiments, two routing protocols OLSR and AODV perform better than DSR when using UDP because they depend on the scalability of a network.
- DSR does give better results with a small network when using UDP.
- But this may not necessarily mean that OLSR and AODV will always perform better than DSR.
- Different routing protocols have different attributes, and depending on the on the type of network and traffic type these routing protocols will always perform differently.

Future work

- Test different traffic applications which are used in disaster events (e.g. video communication).
 - require using simulation tools that support this type of traffic application
 - e.g. OPNET and/or Network Simulation version 2 (NS2).

It would be interesting to get data for a real-life event

- e.g. apply the testing on a case study
- to test if the findings of the simulation would correspond with real-life results.

Term 1 - Project analysis								Term 2 - Project design & development						
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
User requirements														
Requirements analysis design														
Documentation														
Overview of protocols														
Simulation environment analysis														
Pilot study														
Demo														
Documentation														

		Term 3 - Project implementation								Term 4 - Project testing & evaluation						
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7		
Simulation methodology																
Implementation																
Documentation																
Results analysis																
Results conclusion																
Documentation writeup																

Reference

- Ali, S., & Ali, A. (2009). Performance Analysis of AODV, OLSR, and DSR in MANET. Retrieved 01 18, 2011, from essay.se: http://www.essay.se
- DiMarco, C. (2011, 01 11). *Utilizing Voice Broadcasts in Disaster Scenarios.* Retrieved 03 12, 2011, from TMCnet: www.tmcnet.com
- OPNET Technologies Inc. (2009). OPNET Support Center. Retrieved 06 15, 2011, from www.opnet.com
- Rahman, A., Islam, S., & Talevski, A. (2010). Performance measurement of various routing protocols in ad-hoc network. Retrieved 02 21, 2011
- Arnold, J. L., Levine, B. N., Manmatha, R., Lee, F., Shenoy, P., Tsai, M. C., et al. (2004, 07-09). Information-sharing in out-of-hospital disaster response: The future role of information technology. Retrieved 08 15, 2011, from Prehospital and Disaster Medicine: http://pdm.medicine.wisc.edu
- □ Yamsani Ravikumer, Sarath Kumar Chittamuru. "A Case Study on MANET Routing Protocols over HTTP and TCP." essay.se. 06 2010. http://www.essay.se (accessed 01 25, 2011).
- MOTOA4, & Motorola Inc. (2008). *Mission Critical Portfolio*. Retrieved 06 18, 2011

