
1

Mobile banking with Pay-Pal
By

Nhlakanipho Ndlamlenze

A project report submitted in partial fulfillment
of the requirements for the degree of

B.SC. Computer Science (Hons)

University of the Western Cape

2012

Date: Nov 23

2

University of the Western Cape

MOBILE BANKING WITH PAY-PAL

By

Nhlakanipho Ndlamlenze

Supervisor: Professor Isabel Venter

Department of Computer Science

The system will allow the mobile phone users including those without
bank accounts to use and benefit from mobile banking.
If a Pay-Pal account is shared by multiple mobile phone users, each
user can pay a third party by sending a Short Messages Service (SMS)
message to a dedicated server. A server program will wait for
incoming SMS messages from the mobile phone user, interpret the
message and initiate third party payment service from the mobile
phone users Pay-Pal account on the Pay-Pal server, if the user's
account has the necessary funds for the payment.
All users will have to create their accounts to hold their balance
amount on the system. The sum of all users’ balance is stored as a
single amount in the multi-shared Pay-Pal account.

3

TABLE OF CONTENTS

Table of Contents
LIST OF TABLES... 5
Acknowledgments... 6
Glossary... 7
CHAPTER 1.. 8

The users requirements document..8
Purpose... 8
Requirements.. 8
Specific Requirements... 9
User Requirements Survey Report..10

Closed Questions... 10
End User Requirements... 12
Conclusion .. 13

CHAPTER 2.. 14
The requirements analysis document..14

Introduction... 14
Current System... 15
Proposed System... 15
Functional Requirements...16
Non-Functional Requirements...17

Usability.. 17
Reliability... 17
Performance.. 18
Implementation... 18
Interface.. 18
System models.. 18
User case diagram... 19

CHAPTER 3.. 21
USER INTERFACE SPECIFICATION (UIS)..21

Introduction... 21
Prototype Screen Shorts..21

Conclusion... 25
CHAPTER 4... 26

OBJECT ORIENTED ANALYSIS (OOA)..26
Introduction... 26
Business Rules... 26
Class Diagrams.. 28

CHAPTER 5.. 29
OBJECT ORIENTED DESIGN (OOD)...29

Introduction... 30
Development Technologies...30

4

SMSDaemon.. 30
Algorithm... 31

User Input Program .. 32
Algorithm... 33

Server Program .. 34
Processing Data .. 35
Inputs.. 35
Outputs.. 36
Algorithm... 36

User Output Program... 40
Algorithm... 40

Transaction Class.. 40
Algorithm .. 41
Outputs ... 42

CHAPTER 6.. 43
Code Documentation... 43

Master Program... 43
@Description... 43

@Inputs:.. 44
@Outputs:... 44

CHAPTER 7 ... 56
Testing Document... 56

Testing Techniques.. 56
Functional Testing... 56
Valid Inputs.. 56
Invalid Inputs... 57
Possible Outputs.. 58
Implementation Testing...58
Test Tools.. 59
Test Scripts.. 60
User Testing.. 61

CHAPTER 8.. 62
User's Guard.. 62

Introduction... 62
Administrative System.. 62

Request parameters:... 62
Response:.. 63
Input Parameters:.. 63
Response Parameters:...64

End User System .. 64
Change password by SMS:..64
Pay a third party by SMS:..64
Request balance by SMS:..65

REFERENCES.. 66
APPENDICES.. 67

5

LIST OF TABLES

Index of Tables
SurveyResults.. 9
Table3.. 55
SlavesTestResults.. 56
UserTestingResults.. 57
UserRegistrationInput.. 58
UserRegistrationResponse... 59
ClientDetailsRequest... 59
ClientDetailsResponse... 59

6

ACKNOWLEDGMENTS

Professor I Venter, from Computer Science Department at UWC
provided a great effort on the success criteria of this document
compilation. She has been editing each and every sentence on this
document and also providing the supervision of the whole process of
requirements analysis.
Students from UWC have given us their valuable time to respond on
our research questions during the research survey of the project user
requirements.

7

GLOSSARY

SMSC: Short Message Service Center allows mobile phone users to
send an SMS. It is provided from all Mobile Network Operators.
SMPP: Short Message Peer-to-Peer delivers messages from SMSC
Agent like Mobile Network operator to a dedicated application
program.
SPAM: Flooding of many copies of the same messages in attempt to
force a message to multiple people. It is mostly used for commercial
related tasks such as advertising and more.
Pay-Pal: A mobile banking System that provides a capability to share
money on-line.
API: Application Programming Interface (API) allows programmers to
write programs to command a System to perform certain functions.
NVP: The Name-Value Pair (NVP) API provides parameter-based
association between request and response fields of a message and
their values. The request message is sent from a website by the API,
and a response message is returned by PayPal using a client-server
model in which the site is a client of the PayPal server.
HTTPS: This is HTTP protocol that includes transport security layer
(TSL) that promotes encrypted that exchange on the Network
Transport Layer.
SMS: Is a service component from a mobile or computer device used
to allow exchange of text messages.
BLUE-TOOTH: A wireless network that enables devices to share data
at short range.

8

CHAPTER 1

THE USERS REQUIREMENTS DOCUMENT

Purpose
This document describes the user requirements for a project that
explores the development of a system for mobile banking by means of
SMS messaging. The system will be useful for persons without bank
accounts when they want to pay a third party.

Requirements

A mobile phone user will send an SMS message containing a text such
as: “send 5000 to 234567 (Pay-Pal account) from 0721655148
(Mobile number)”. A response SMS will require a user to provide
necessary authentication details and etc. Each user cannot transfer an
amount more than his/her account balance.

All of the users’ balance amounts are summed up and stored as a
single Pay-Pal account balance. During the user transactions, Pay-Pal
will transfer money from this shared account to a specified third party,
on response to an SMS text that has been sent by a user. If the
transactions are possible both the money sender and receiver will be
notified by an SMS and the sender’s account balance will be reduced
by the transferred amount.

9

Specific Requirements
• A user must be able to send money to a third party by means of

SMS without the need of a bank account.

• All users should be able to send money from the combined
account (Pay-Pal account or Bank account) to their mobile phone
numbers' accounts.

• A user must be able to check their account balance statements
and update their personal information using the SMS.

• Any user should be able to cancel his/her account.

10

User Requirements Survey Report

Closed Questions

Question Description Respondents A B C Mean Analysis
1 Use

cellphone
banking
(A)YES or
(B)NO

9 5 4 - 0.55 55% of
people uses
cell-phone
banking

2 Frequently
performed
Cell-phone
banking
tasks: (A)
To pay the
third pay
party or (B)
other

9 7 2 - 0.77 77% of
mobile-
phone
banking
users, use it
for paying
third party

3 Would not
make a
bank
account if
there was
an
alternative
banking
option:
(A)Yes or

20 14 8 - 0.70 70% of
people
would not
make a
bank
account if
there was
an
alternative
banking

11

(B) No option
4 Suffer from

Internet
connection
due to their
geographic
al area:
Frequently(
A),
Sometimes(
B),
Never(C)

13 6 5 2 0.46 46% on
average
has Internet
connection
issues on
their
environmen
tal locations

5 Usually
receives
SMS
messages
delivery
failure
messages:
Yes(A) or
No(B)

20 1 1
9

- 0.01 10% on
average
faces SMS
message
delivery
failure

6 Familiar
with SMS
messaging
application
on their
mobile-
phone:
Yes(A) or
No(B)

21 18 3 - 0.85 85.07% on
average
people can
use SMS
messaging
application

10 Think the
system will

17 5 1
6

- 0.29 29.04% on
average

12

be
beneficial
only to the
people
without
bank
accounts
and mobile
web
technology:
Yes(A) or
No(B)

thinks the
system will
not benefit
everyone

Findings: Based on the open questions included on the appendix of
this document, it is concluded that: People find it a complex task to
open a bank account due to the number of documents to validate
their personal details. This makes us an opportunity to develop a
mechanism that which we can use to validate a user address and
proof of student registration, or employment.

End User Requirements

The end user will only interact with the system by means of SMS.

 Only, the administrative user who can access the system through the
web services.

13

User can only send a specific text otherwise receive an error message
that include help hints for options.

Paying a third party:
SEND {amount(either a character R can be include or not)}
TO {receipted(either a mobile or a pay-pal account number)}
FROM {only the mobile number}
Example: SEND 800 TO 0788700707 FROM 0791655148

Request the account balance:
BALANCE FOR {mobile number }
Example: BALANCE FOR 0791655148

Updating account details:
CHANGE {content}
TO {new value}
Example: CHANGE password TO mynewpassword22#

Authentication:
Example: mynewpassword22#

Conclusion

The system will solve the problem for a user who do not have a bank
account when they need to pay a third party. That will benefit
including a user that does not have a mobile web technology on their
mobile-phone.

14

CHAPTER 2

THE REQUIREMENTS ANALYSIS DOCUMENT

Introduction

The system will be of use to all mobile phone users. They can use and
benefit from Internet money transfer system if their mobile phones
support SMS messaging technology.
The brief scope of the project: involves requirements analysis and
implementation, testing, source code repository and the user manuals
creation will come towards the end of this project.
The system objectives: is to allow people without bank accounts to
pay the third party and the success criteria depends on the availability
of time, sponsorship and availability of developer(s) during
implementation process.

Current System

Mobile banking systems are currently advantageous when mobile
phone users have mobile web technology on their cell-phones.

15

A statistical survey completed at the beginning of this project suggest
that, most people cannot enjoy using the current INTERNET banking
systems due to their poor or no Internet access on their geographical
areas. It is also recognized that, the SMS banking services provided
from the Banking Institutions does not solve the problem due to the
shortage number of the banking ATM to withdraw their cash.

Besides the INTERNET problems, a lot of users cannot tolerate with
the idea of supplying the hard copies of their personal details, such as
residence address, pay-slip, proof of student registration or
employment and etc, whenever they need to open the bank accounts.

Proposed System

Users will benefit from mobile banking when they have mobile-web
technology or not. This solves a problem aroused from a number of
users who find it necessary to include their mobile web non-supported
devices.

Almost every individual who can need to do banking can send SMS
message using their mobile-phone. That will be beneficial due to the
case that, almost every geographical location has less issues
accessing their base station of a mobile network. As a results, the
network operator's SMSC can be accessed at almost anywhere
without the mobile web browser on the mobile device.

Users can receive money to their accounts from others or the third
parties. They will not need to withdraw cash from the ATM to pay third

16

party.

More-over, a user that cannot open a bank account can still pay the
third party without the need of opening one. The users can also get
paid through the system when they supply their mobile numbers to
their employees. Where case matters, a member from a certain bank
can transfer money to the system a swell when they provide a specific
mobile phone number.

Functional Requirements

The end users will send and receive messages through their current
mobile network operator.

The system will have a mobile-phone that has a cellphone number
which is registered with a specific mobile network operator, which will
allow it to send and receive SMS messages. Such that, when our
system mobile-phone receives an SMS message it will automatically
forward it to the system server. The system will respond to users by
sending a text messages, via blue-tooth, to the mobile-phone. Then,
the mobile-phone will send them via mobile network operator's SMSC
as SMS messages, to the end users.

Every user must have a few records, keeping their accounts
information, including account balance on a database. A Pay-Pay
account is created to store the total amount of every user's account
balance. This account is used for third party payment options through
Pay-Pal for the users. A user paid the third party will have his/her
account balance reduced by the total amount used from Pay-Pal

17

account to pay the third party. Users will be notified by SMS on any
matter taking place on their accounts, such as transactions failures
and etc.

The system will access the Pay-Pal server through Name-Value Pair
(NVP), an API, provided from Pay-Pal. Our client program will initiate
third party payment transactions process, on Pay-Pal server program,
when the system needs to pay a third party using the account that is
shared by mobile-phone users.

A mobile number is used to read and write messages on a mobile
network operator's SMSC to and from users from and to our server

Non-Functional Requirements

Usability
The enjoyable user experience will be ensured by the reliability of the
SMS messages delivery. As results, the transactions will be
guaranteed.

 Reliability
SMS message delivery is reliable and guarantees uninterrupted
communication between users and the system. The MySQL database
and system backups’ mechanism will be considered on
implementation.

Performance

The efficiency of the system will be ensured through source code
optimization. The aim is to produce a fast as possible system that will

18

improve enjoyable usability.

Implementation

The system will be hosted on an Apache Server. PHP programming
language is used for a client program that initiates transactions from
an account that is shared by mobile phone users, on Pay-Pal server.
Java Programming language will be used for a program which will
receive and send SMS messages through a mobile-phone device. A
mobile-phone device is used to send and receive SMS messages via
the mobile network operator to and from the system users.
MySQL database is used for user accounts details processing.

Interface
End users will only communicate to the system by means of SMS,
thus, they will see the system outputs in SMS text format based on
their specific mobile devices.

System models

 A user wants to pay a third party

A girl sends an SMS message to 0791655148 (The system's mobile-
phone number), containing this text: “send R300 to 0841234567 from
0791234567”. Then she receives an SMS message with the following
text “Please send password for 0791234567”.
After she has sent her password, she will receive a text “Sent R300 to
0841234567, your remaining balance is: R4908”. Also an owner of the
mobile number 0841234567 will receive the following text “Received
R500 from 0791234567”, as an SMS message from the system
mobile-phone number 0791655148.

19

User case diagram

Conclusion

The system will be beneficial to everyone. The users will open the
bank accounts only when they want to not pushed by the need of
paying the third party. There will be no need for a user that has
received money by means of mobile banking to withdraw cash in
order to pay a third party. Moreover, a number of users that has more
to deal with will find a fast and reliable way to pay a third party.

20

CHAPTER 3

USER INTERFACE SPECIFICATION (UIS)

Introduction

The end users access the system by means of SMS. They will have to
do every transactions by text messages.

Prototype Screen Shorts

The prototype demonstrates how a user will go about paying the third
party by using this system.

21

Illustration 1: User send SMS to our system (5554) to pay a third
party (5558).

22

Illustration 2: User go about the process to finish sending
money. Then he/she receives pay-Key to that must be given to
the third party to approve the payment.

23

Illustration 3: User requests account balance.

24

Conclusion

The user interacts with the system by means of SMS. The specific text
required from a user to complete a transaction is known, the
remaining text received will be considered as the input exception.

25

CHAPTER 4

OBJECT ORIENTED ANALYSIS (OOA)

Introduction

The Object Oriented Analysis (OAA) design stage will be discussed in
this chapter. It is a process that precedes the object orientated design
stage. And, involves the concepts of object and the activity
sequencing.

Business Rules

26

Business rules defines the ground rules concerning a system and its
database. This is to ensure a minimum control on the end users of
the system and the organization as a whole. They are usually related
to the rules governing the whole company. For this system, Pay-pal
business rules are used to define the database blueprint. These rules
can be found from the website, named PayPal integration center.

• A CLIENT can have only one ACCOUNT. (1-to-1 relationship)

• An ACCOUNT is defined by a unique mobile-phone number.
(Primary key)

• A CLIENT must have a unique identity number. (Primary Key)

• A CLIENT has a unique mobile-phone number. (Foreign Key, links
to ACCOUNT table)

• A USER will have a mobile-phone number as the user-name.
(Foreign key to ACCOUNT)

• Every TRANSACTION taking place should be stored according to
the involved mobile-phone number. (Foreign key, links to
ACCOUNT)

• The TRANSACTION is unique determined by the time of
occurrence, timestamps(Primary Key)

27

Class Diagrams

28

CHAPTER 5

OBJECT ORIENTED DESIGN (OOD)

Introduction

This chapter discuses the system programs design details, where the
objects described from the object oriented analysis stage are used.

Development Technologies

Java, PHP and Perl programming languages

Linux Ubuntu O/S

Android phone and SDK

Net-beans IDE

Apache and MySQL Database servers

29

The system program classes are defined clearly on the rest of this
chapter.

SMSDaemon

The system will access GSM through a Mobile Station attached to the
Server computer by means of USB connection. Android Mobile Phone
is a chosen platform for this system.

30

Algorithm

Initialize the android ADB driver , that enables communication
between the mobile phone and computer through the USB connection.

DO:

Send adb command to the mobile phone to copy received messages
from the SMS table of the cell phone's messages database.

For each copied message; count how many times does it appear on
the on the copied list (phone-count).

Also if such a messages is already on the system database, count how
many times does it also appear in it (system-count).

If phone-count > system-count OR the message is not already on the
system; write it on the system as MSISDN, BODY, timeStamp, system-
count, and SEEN(set to -1).

Send SQL query to the system database to copy a record, where its
attribute; DILIVERED is set to -1 (false).

Send the message to the mobile phone by means of ADB command to
send SMS to the end user. When message, delivered; update it's

31

record on the system database as DILIVERED = 0 (true).

REPEAT.

User Input Program

The system will read messages from its databe, those where written
by the SMSDaemon program.

Algorithm

Read message record where its SEEN value is set to -1 (false).

Create a client socket to the Master program (TCP Port 12) .

Froward the message, only MSISDN along with BODY to the server.
Read response from the socket.

IF success THEN:

Update the read message record as SEEN = 0 (true).

32

Server Program

This program is a TCP Server that awaits for clients sockets at port 12.
It controls the whole system processing include the SESSION records
of Linear lists. It acts upon input from the client programs.

33

Processing Data

Output Linear List: This stores a record that consists of a mobile

number as well as the message that which must be sent to the

mobile number.

PayPal Linear List: Stores the records those that consist of a user's

mobile phone number, the third party's account number and an

amount should be pay the third party.

Session Linear List: Store the record of the users' sessions. Each

record consists of a flag, authenticated, that determines whether a

user has been authenticated or not.

A string variable, command, tells what the next transaction to take
place for this record (e.g.“authenticate” to verify a user's password.).
A string variable, action, determines the type of a session such as
money transfer session or update details one, and or etc.

Finally, a string variable named transaction contains what is passed as
input to the program that performs the transactions to the SQL server.

Inputs

[message MSISDN along with BODY] , “paypal”, “output”,
“transaction” and [“success” | “failure”].

34

Outputs

[“success” | “failure”] , [message MSISDN along with BODY],
[transaction command] and [pay-pal service call details].

Algorithm

Create and bind the server socket to the local-host:12.

DO:

Accept client socket and read input.

Switch (Input);

Case “MSISDN along with BODY”

Search the SESSION list for any record id equal to MSISDN.

IF none found; Create a new SESSION.

Set session id to MSISDN.

Split BODY to array of strings (body[]).

Switch (body[0]);

Case “Send” : Set record's action = “transfer”.

 Execute moneyTransfer() function.

Case “Balance”: Set record's action = “balance”.

35

 Execute balanceRequest() function.

Case “Change”: Set record's action = “update”.

 Execute updatePassword() function.

 Default : DELETE session.

 Execute invalidInput().

 ELSE (session found);

IF the SESSION record's authenticated attribute is set to false;

 Set its password value to the read message BODY.

ELSE;

 IF input is “yes”; Set SESSION command to “transaction”.

 ELSE IF input is “no”; Terminate SESSION.

 Create output object with MSISDN and BODY.

 Set BODY = “Good bye!”.

 ELSE; Create output object with MSISDN and BODY

 Set BODY = “Please send (yes) to continue or (no)”.

Case “paypal”

Send the top record from the PAYPAL list.

Read response from the socket.

Create output object/record with MSISDN and BODY.

 IF “failure”; Set BODY = “Transaction failor. Please try again!”.

ELSE;

36

 Set BODY = “PayKey: “+ response.

 Set command = “transaction” of SESSION id MSISDN.

ENDIF.

Append created record to OUTPUT records list.

REMOVE Record from PAPAL records list.

Case “output”;

Send the top record's MSISDN along with BODY out the socket.

 REMOVE Record from OUTPUT records list.

Case “transaction”;

Access the top record of the SESSION list.

 IF its command variable is set to “authenticate”;

Send “authenticate” + session's password value + MSISDN.

Get response from the socket.

 IF “failure”;

 Create output object/record with MSISDN and BODY.

 Set BODY = “Incorrect Password!”.

ELSE;

 Set session's authenticated = 0 (true).

37

 Set session's command = “transaction”.

ENDIF.

ELSE IF command == “verify”;

 Verify user balance.

 Send “verify” + session's amount + MSISDN.

 Get response from the socket.

 IF “failure”;

 Create output object/record with MSISDN and BODY.

 Set BODY = “Insufficient funds!”.

 ENDIF.

ELSE IF command == “transaction”;

 Switch(session's action);

 Case “transfer”;

Send “transfer ” + sessions' amount + “ from ”+
session's MSISDN through the socket.

 Get response from socket.

IF not “failure”;

Create OUPUT record with session's MSISDN.

Set BODY=”Sent R”+session's amount + “ to ” +
third-party + “ successfully.”. response from socket.

 ENDIF

 Case “balance”;

Send “show balance “ + session's MSISDN.

38

Read response from the socket.

 Create OUPUT record with session's MSISDN.

Set BODY=”balance :R”+ response from socket.

 Case “update”;

Send “change password to ” + session's new_password
Read response from socket.

Create OUPUT record with session's MSISDN.

Set BODY=”changed password successfully.”.

User Output Program

The system will write output messages on to the system. This
program allow query the output from the master program.

Query : “output”

Response: [MISISDN along with the BODY]

Algorithm

Create client socket to connect to the master. Send a string “output”.
Read response from the Master.

If response is not “null” then; write the message on the database as
delivered set to -1 (false).

39

Transaction Class

This program execute SQL commands to support the transactions for
the whole system. The program will send a string “transaction” to
scan for transactions to perform on the SQL server.

Algorithm

Connect to the master and forward a string “transaction'.

Read the server response, as a line of string: Line .

Strip the line into an array of strings: msg[]

Switch(msg[0])

 Case "authenticate" // The input looks as follows:
authenticate +2771234567 'password'

Verify from the SQL server, if the user +2771234567
 has a password similar to the one supplied as

“password” from the server.

 Set $result to “success” if it matches or fail or.
otherwise

 Case “verify” //The input looks as follows: verify +27712345672000

40

 Simply check if the user has balance above R2000 from
the user +2771234567 on the database.

Set $result to “success” where the balance is above
R2000 or else fail where the funds are insufficient .

 Case “transfer” //The input looks as follows:
transfer 2000 +2771234567 +27838989835.
On the SQL server, decrement by R2000 the balance
for the user +2771234567.
If the msg[3] is the mobile number that is

registered on the system then increment
its balance byR2000 as well.

Finally, set the variable $result to “success”.

 Case "change" //Input: change "Table" "Cell" "new information"
+27791234567 .

Simply update the specified table name and column
where user = +27791234567 with the “new formation”.
Finally, set $result to “success”.

 Case “show” //Input: show "Table" "Column" +2789876547 .
Simply select the specified Column from the Table
where the mobile number is +2789876547 .
Set $result to the acquired results from the select
statement on the database.

41

Finally, send the $result value out to the server and
close the socket.

Outputs

The program outputs the transactions' results back to the server.

42

CHAPTER 6

Code Documentation

Master Program

/*

 * @program Master

 * @author Ndlamlenze NS, MR (2856212)

 *

 * @Description

 * This program is the master of the system. It execute functions on
response

 * to slave program's input. The are for slaves, viz Input, Output,
PayPal

 * and Transaction.

 *

 * @Inputs:

 *

 * The Input program; enters the end user messages. The remaining

 * three programs enter the string that is its file name.

 *

 * @Outputs:

43

 *

 * This program outputs messages to be delivered to the end users,
transactions

 * to execute on the database and details for PayPal payment caller
service.

 *

*/

package master;

public interface MasterInterface {

/*Global variables */

 private ServerSocket servSock; //server socket

 private Socket clientSock; //A client connected to a serve

 private int port; //Server port

 private DataInputStream fromSock; //socket read

 private PrintStream toSock; //socket writer

 private master.FIFO PayPalRecords; //paypal records linear list

 private master.FIFO OutputRecords; //output records linear list

 private master.FIFO TransactionRecords;

 private master.PayPalRecord pr_pointer; //paypal record pointer

44

 private master.OutputRecord or_pointer; //output record pointer

 private master.TransactionRecord tr_pointer; //transaction
record_pointer

 private String data; //input variable

 private String[] msg; //input processing array

/*Send a string 'autheticate' followed by tr_pointer's user and
password values.

 out the client socket.

 Read response from the client socket.

 Switch(Using the response)

 Case 'success'

 //password matches the one kept on the database

 Set the tr_pointer's autheticated value to TRUE

 IF tr_pointer record's action is set to 'transfer' THEN

 Set pointer's command variable to 'verify' to verify the suffient

 funds for a user to transfer to a third party.

 ELSE

 Set the user verification message; run setVerification()

 Default Case

 //password doesnt match the one kept on the database

 Create a new output record to send SMS out to the end user

45

 Set the newly created record user to tr_pointer's user

 Set also its message to 'incorrect password, please try again'

 Append the created output record onto the output records list.

 */

 void authenticate();

 /*Create a balance request session and append it on the transaction
list*/

 void balance();

 /*Create a user details updating session or transaction and append
it to the

 transaction records list.

 */

 void changeDetails();

 /*Using the method of regular expressions, we determine if a
message has either send or receive

 and or statement as SMS content to create a new transaction or
session*/

46

 /*@return: a function, whether it's transfer, or update, or
account_statement*/

 String getFunction(String data);

 /*Three possible input to initiate a transaction

 A method of regular expression is used tho extrac patterns

 if input has a string 'send'

 run transfer()

 else if it has 'change'

 run changeDetails

 else if 'balance'

 run balance()

 else

 run validateInput()

 */

 void input();

 /*Generates an invalid SMS instance to send it to the end user*/

 void invalidInput();

47

 boolean isFound(String T, String p);

 /*Check if a third party is either a paypal account or a mobile
number of a user that

 is registered on this system*/

 boolean isPaypalAccount(String data);

 boolean isStatement(String T);

 boolean isTransfer(String T);

 boolean isUpdate(String T);

 /*Get the top node from the outputrecords linear list and call it;
or_pointer.

 IF the top node or or_pointer is null THEN

 Write a string 'null' out the socket.

 ELSE

 Write both the user and message values of the or_pointer record
out the

 socket.

48

 Remove the top output record from the linear list.

 */

 void output();

 /*Searches the linear list; PayPalRecords, for an instance.

 IF no record entity is found on the list; PaypalRecords THEN

 Send a string 'null' out the client socket.

 ELSE

 Get the top node of the paypalrecords linear list, and name it
pr_record.

 Initialize the a variable; data, with th amount from the record
pr_pointer.

 Append th data with the third party's paypal account from th
pr_pointer record.

 Append data variable with th user's mobile number from th
pr_pointer record.

 Write data variable's value through the client socket.

 Read the PayPal Transactions' result from the client socket

 switch(using the data that was read from socket as results)

 case 'success'

 Set the transaction record pr_pointer's command variable

 to 'transaction'.

49

 Remove the paypal record that we have dealt with from the paypal

 records list.

 case 'failure':

 Create a new output record; or_pointer, to send SMS out

 to the user.

 Set the or_pointer's user variable with the tr_pointer's user

 value.

 Set the or_pointer's message with an unsuccessful message value.

 Append the op_pointer record on the output records list

 */

 void paypal();

 /*A TCP server process is started

 loop for ever

 accept client and read input from an accepted socket

 ELSE a client inputs a string 'paypal' THEN

 run paypal()

 ELSE IF it's a string 'transaction' THEN

 run transaction()

 ELSE IF a string is 'output' THEN

 run output()

50

 ELSE

 input is an SMS message that has been sent from the end user

 run input()

 */

 void run();

 /* Sends the transaction details found on the transaction record;
tr_pointer

 IF a tr_pointer's command variable is set to 'authenticate' THEN

 run authenticate()

 ELSE IF command is 'verify' THEN

 Verify sufficient funds to pay a third party for a tr_pointer's user

 Write a string 'verify' followed by both th tr_pointer's user and
amount values

 out the client socket.

 Read the response from the client socket.

 Switch(Using the read response)

 Case 'insufficient funds'

 Create a new output record to send an SMS out to the end user.

 Set the newly created instance's user to the tr_pointer's user value.

 Set also its message variable to 'insufficient funds'.

 Delete the transaction, tr_pointer from the transactions list.

51

 Default case

 Set user verification message; run setVerification.

 ELSE

 It is a general transaction, simply write pointer's transaction
variable's value

 out the socket.

 Read response from the client socket.

 IF the response is 'success' THEN

 What ever transactions were successful, generate a user feedback

 message; run setUserFeedBack.

 */

 void sendTransaction();

 /*Generates a user feedback message and also terminate a
transaction*/

 void setFeedBackMessage();

 /*Generates an SMS to get user response about whether he still
wants to continue or cancel the

 transactions*/

 void setVerification();

52

 /*Gets the head node from the TransactionRecords list and name it;
tr_pointer.

 IF the top node or tr_pointer is null THEN

 Write a string 'null' out the socket.

 ELSE

 DECLARE found boolean and initialize it to FALSE

 WHILE (NO TRANSACTION HAS FOUND), LOOP through the
transactions linear list.

 IF a transaction record on the list has command set to 'paypal'
THEN

 Skip, move to the next node.

 ELSE IF a command set to 'sms' THEN

 Skip, move to the next node.

 ELSE

 Set found boolean to TRUE,...has found a transaction.

 END WHILE

 IF found boolean is still set to FALSE THEN

 Write a string 'null' out the client socket.

 ELSE

 RUN sendTransction()

 */

 void transaction();

53

 /*Creates a money transfer session or transaction record and
append

 it to the transaction records linear list

 */

 void transfer();

 /*Ensures that, a user has entered a correct input*/

 void validInput();

 /*If an input SMS has any string that is not meant to

 * create a new transaction

 get a an instance from transaction records list that matches the
user

 if no such user exits on the list

 run invalidInput()

 else

 if the input is the password

 set the instance's passwd = input SMS

 also command = 'verify'

 else a user had to send yes or no, to verify transaction

 if input == 'yes'

 set instances command = 'transaction'

54

 else if is 'no'

 remove the instance from transactions list

 else

 * run invalidInput()

 */

 void validateInput();

}

55

CHAPTER 7

Testing Document

Testing Techniques

The Agile software process was used as therefore, unit testing was
applied such that, a lot of changes have taken place. There were three
stages of the development framework where the testing processes
took place which are; Design, Implementation, and Functional
Testing).

Functional Testing

Black Box Testing method was used. The testing case is where the
tester does not know anything about the source code or program
implementation.
Initially, the requirements were analyzed as follows:

1. The valid inputs were chosen.
2. The, we have tested the invalid inputs.
3. Decided on all possible outputs.
4. Created and executed the test cases with the selected

inputs.
5. Debugging and re-testing the fixed defect.

Valid Inputs

56

 Transfer money:
 [Send] [amount] [to] [third-party account]

 Update password:

 [Change password] [new password]

 Request balance:
 [balance]

User Transaction Verification or Confirmation:
[yes] or [no]

Invalid Inputs

Transfer money :
- [Send] (if a user has misspelled; “send”.)
- Line with less than four strings (a user has forgotten

to write; “to”.)
 - (forgot to write the amount to be transferred.)

- (forgot to write the third party's account.)

Update password:
 - [Update password] (any misspelled word)

- (the user has not included a new password string)

Request balance:

[balance] (misspelling error)

User Transaction Verification or Confirmation:

57

[yes] or [no] (misspelling error)

 Empty string input.

Possible Outputs

User Authentication:
Please send password.
Please send password to change {old password} to

{new password}.
The password {supplied password} is incorrect, please

send the correct password.

User Transaction Verification or Confirmation:
Please send (yes) or (no) to continue or cancel

{specified transaction}.

User feedback:
Sent {amount} to {third-party account}, successfully.
Could not send {amount} to {third-party account},

{reason for transaction failure}.
You have insufficient funds to send {amount} to {third-

party account}.
Balance: {amount}.

 Invalid input {supplied string}.
Please specify the amount to send to {third party}.

58

Implementation Testing

White-box-testing technique was used. This test focuses on the
internal structures of the application. Code coverage; scripts that
make all statements in the program to be executed at least once,
control flow testing, data flow testing and decision coverage.

The system consists of the following three units which were was
tested on this stage:

1. Master Program – Data Structures and Records
implementation functions.

2. PayPal Useragent – Paypal Communication through HTTP with
NVP, functionality.

3. User I/O Programs – SMS I/O through a GSM Mobile Station
functionality.

Test Tools

The Master Program test is by means of Netbeans developer tool. This
involves code Source Code Profilation (Memory and CPU
Performance).

Tool Function

Netbeans CPU Performance

59

Netbeans Memory Profilation

AppPerfect Java Unit Code Performance
Testing

Test Scripts

Name Average Time
(second)

Function

SMSDaemeon-
TEST

0.0012 Copy a received message from the
Mobile Station to the System database.
And also from the System database
and send it out the mobile station
as SMS.

UserInput-
TEST

0.0010 Read unseen message records, from
the System database to the
Master program.

PayPalPayer-
TEST

0.0125 CREATE and EXECUTE remotely, a
PayPal Implicit Adaptive Payment.

UserOut-
TEST

0.0020 Scan output from the Master program
 to the System database.

60

User Testing

Task No of
Users

Average
Time\
(minutes)

Variance
(seconds)

Level of Difficulty

Add
Account

 9 1 0.05 Very Easy

Paying a
Third
Party

9 3 0.04 Average

Change
password

10 2 0.05 Easy

Request
balance

9 2 0.06 Very Easy

61

CHAPTER 8

User's Guard

Introduction

The system allows the administrative user as well as end users to
manipulate data.

Administrative System

The administrative user adds the users accounts on the system. They
user the web based administrative tool.

Request parameters:

Variable Description
Name User first names.

Surname User surname

Identity Number User identity/passport number

Mobile Number User Account Registration mobile
number.

Initial Balance Cash handed on by a user when
registering account.

62

Response:

 Variable Description
 Username User's mobile number.

 Password Default user password.

The administrative user can request user details from the system to
edit.

Input Parameters:

Variable Description
Mobile Number A user's mobile number that

his/her details are requested.

Response Parameters:

Variable Description
Name(s) User both names and surname.

Mobile-phone number User account mobile number.

Id Number User identity number.

Balance User account balance.

Button Submit button after editing
values.

63

End User System

The end users get default password that needs to be updated
immediately when the user has registered on the system. The End
User do all the transactions by means of SMS.

Change password by SMS:

Input : change password to [new_password].
Output : please send old password.
Input : [old password].
Output : changed password to [new_password].

Pay a third party by SMS:

Input : send [amount] to [third party mobile number]
Output : please send password.
Input : [user_password]
Output : please send (yes) or (no) to continue or cancel [transaction]

EITHER
Input : Yes
Output : Send [amount] to [third-party mobile number], successfully
OR
Input : No
Output : Cancel led sending [amount] to [third-party mobile number].

64

 Request balance by SMS:

Input : Balance
Output : please send password.
Input : [your password]
Output : Balance: [amount]

65

REFERENCES

• Pay-Pal Integration Center URL:https://cms.paypal.com/us/cgi-bin/?
cmd=_render-
content & content_ID=developer/library_download_sdks

• JblueZ, a Java package which interfaces with the BlueZ Bluetooth
protocol stack for Linux. URL: http://jbluez.sourceforge.net/

• BlueZ, an Official Linux and Android Bluetooth protocol stack.
URL:http://www.bluez.org/

Android Developer SDK, URL:
http://developer.android.com/sdk/index.html

• Android.bluetooth,URL:http://developer.android.com/reference/andr
oid/bluetooth/pAckage-summary.html

• How to Handle SMS on Android. Written by: Denys Podymskyy on
Friday, 29 April 2011 09:00. URL: http://www.apriorit.com/our-
company/dev-blog/227-handle-sms-on-android

• Computer World- How SMS Works, last edited on 2011/11/06
URL:http://computer.howstuffworks.com/e-mail-
messaging/sms.html

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/library_download_sdks
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/library_download_sdks
http://computer.howstuffworks.com/e-mail-messaging/sms.html
http://computer.howstuffworks.com/e-mail-messaging/sms.html
http://www.apriorit.com/our-company/dev-blog/227-handle-sms-on-android
http://www.apriorit.com/our-company/dev-blog/227-handle-sms-on-android
http://www.apriorit.com/our-company/dev-blog/227-handle-sms-on-android
http://developer.android.com/reference/android/bluetooth/package-summary.html
http://developer.android.com/reference/android/bluetooth/package-summary.html
http://developer.android.com/sdk/index.html
http://jbluez.sourceforge.net/
http://bluez.sourceforge.net/
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/library_download_sdks
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/library_download_sdks

66

APPENDICES

Statistical Demography Answers for Open Questions

Why would you need a bank account if there was a system that kept
your money at confident , let you pay your bills by sending a couple of
SMS and updated you about account statements via the SMS
messages.

Respondent
I would need a bank account so that I can have a credit/debit card to
pay at shops, garages and restaurants.
To borrow loans, such as study loans. I would not need a bank
account, guess.

Respondent
I do not need a bank account.

Respondent
I am a woman of style; prefer not to carry cash around but my ATM
card, with me. Paying with your card is up-to-date.

Respondent
To buy air-time from the ATM, use my debit card for payments and a
lot, you know.

Respondent
I do not know…
Findings: It seems as people does not use their bank accounts only
for banking but for purchases as well. This makes it necessary to

67

adjust a system so that they can be able to benefit from e-commerce
payments systems using their mobile numbers.

What else do you do with your bank account except saving your
money, paying the ATM charges and credit/debit card purchasing at
shops?

Respondent
Nothing at all

Respondent
I do not have much to do with banking

Respondent
I prefer to buy in cash, do not borrow loans from my bank either.

Respondent
I am paying for my loan I have used to buy my car.

Respondent
Nothing

Respondent
I am not sure

Findings: Some people still depends on their banks for loans; because
of the increase in the number of loan providers this should not affect
the user’s view of this system’s quality
Is it too easy to create a bank account such that everyone can open a
bank account irrespective of the location they may be situated at
presence and their status of life?

68

Respondent
No, you cannot create a bank account at a different city of you
hometown.

Respondent
To create a bank account, you need a valid proof of residence which is
hard to find due to the shortage of paper based letters from post-
offices.

Respondent
Blacklisted people find it too hard or imposable, to create bank
accounts. Besides, they do not allow you to create a business account
if your business is still making too less profit.

Respondent
Students cannot create student bank accounts at times where they
cannot reach their educational institutions to ask for the proof of
registration.

Respondent
Creating a bank account will always be a complex challenge because
of the bunch documents needed to create a simple bank account.

