
The Interactive Visual Picross Solver
(IVPS)

Ntsikelelo Sonjica

Thesis presented in fulfilment
of the requirements for the degree of

Honours in Computer Science
at the University of the Western Cape

Supervisor: Reg Dodds

Co-supervisor: Mehrdad Ghaziasgar

November 2016

ii

Declaration

I, Ntsikelelo Sonjica, declare that this thesis “The Interactive Visual Pi-

cross Solver (IVPS)” is my own work, that it has not been submitted before

for any degree or assessment at any other university, and that all the sources

I have used or quoted have been indicated and acknowledged by means of

complete references.

Signature: . Date: .

Ntsikelelo Sonjica.

iii

iv

Abstract

A picross puzzle is a game that takes the form of a R × C grid, with num-

bers placed on the left of its rows and on the top of its columns, which give

the hints to solve the puzzle. These puzzles have been popular since the

past years all over the world, and there are companies involved in the com-

mercialization of products related to them, mainly magazines, newspapers,

games for mobile phones and on-line puzzles that are found in the web(1).

This project focuses mainly and only on the picross puzzles that are found in

newspapers, magazines, i.e the picross puzzles that are hard-copied or drawn

in papers. The aim is to use a visual and interactive approach to help the

users(picross puzzle solvers) to better solve the picross puzzles that are found

in papers. This project hypothesizes that the success of this project would

be a solution to many problems that the users experience when they solve

the puzzles, few may include: the minimization of the number of mistakes

that one makes when solving the puzzles, to minimize the time that the user

takes to solve the puzzles, a solution to the unavailability of the undo button

when one has made a mistake, and the immediate availability of solutions of

the puzzles to users. Also the technique can then be extended and applied to

many puzzle games like Sudoku, tic-tac-toe and word-puzzle games that are

found in papers. This would also eliminate the fact that it is only experienced

players that solve puzzles in papers due to few hints given to players because

it would also enable beginners/new players to easily learn how to play and

solve the picross puzzles. In general this report hypothesizes that the picross

solvers would learn and solve the picross puzzles found in papers better using

the IVPS approach than using the traditional way to solve the puzzles. The

remainder of this paper is divided into three chapters; the first chapter de-

scribes the User Requirements Document followed by the description of the

Requirements Analysis Document and a concluding chapter.

v

vi

Key words

Picross puzzles

IVPS

OpenCV

Computer Vision

Image processing

Machine learning

Magazines

Newspapers

Hard-copied or drawn in papers

vii

viii

Acknowledgment

This project is a compilation of the efforts of many people that helped me

through the year. I would first like to thank my supervisor and co-supervisor,

respectively Mr. Reg Dodds and Mr. Mehrad Gaziasgar, for encouraging me

during my study. Without our weekly meetings, this work would not have

been possible. At this time I would like to extend a very special thanks to

God. Without his grace I would certainly not be where I am today. I would

also like to thank TFG for their unwavering financial assistance without which

my efforts would have been impossible.

ix

x

Contents

Declaration . iii

Abstract . v

Key words . vii

Acknowledgment . ix

List of Tables . xiii

List of Figures . xv

Glossary . xvii

1. User Requirements Document 1

1.1 Introduction . 1

1.2 Users View of the Problem . 1

1.3 Description of the Problem . 2

1.4 Expectations from the Solution 3

1.5 Not Expected from the Solution 3

2. Requirement Anaylsis Document 5

2.1 Introduction . 5

2.2 Designers Interpretation of the User Requirements 5

2.3 Related Work . 6

2.3.1 Automatic Puzzle solving with Image Processing by (5) 6

2.3.2 Visual Chess Recognition by (6) 6

2.3.3 Sudoku Solver by (7) . 8

2.4 Link these Solutions to the Problem 8

3. Conclusion . 11

Bibliography . 12

xi

xii

List of Tables

xiii

xiv

List of Figures

1.1 IVPS system . 2

xv

xvi

Glossary

URD User Requirements Document.

RAD Requirements Analysis Document.

IVPS Interactive Visual Picross Solver: is the interactive approach to solve

picross puzzles that are hard-copied or drawn in papers.

OpenCV Open Source Computer Vision: is a library of programming func-

tions mainly aimed at real-time computer vision.

xvii

xviii

Chapter 1

User Requirements Document

1.1 Introduction

The User Requirements Document (URD) is a document that is mostly used in

software engineering, it describes the requirements that the user expects from

the software which is to be developed. The URD gives a brief description

of the problem from the user’s point of view and desired results. The URD

section is divided in to 5 subsections, namely, the Introduction, Users View

of the Problem, Description of the Problem, Expectations from the Solution

and finally, Not Expected from the Solution, the subsections are organised in

that order.

1.2 Users View of the Problem

The user requires an interactive picross solving approach that gives him/her

enough hints and instructions or warnings to play and solve a picross puzzle

found in a paper.

The user requires an interactive picross solving approach that helps him/her

to improve his/her solving skills and easily practice more solving strategies.

The user requires an interactive picross solving approach that minimizes the

time it takes him/her to solve the picross puzzles.

The user requires to get a solution of the picross puzzle immediately after

playing.

The user (inexperienced) requires to learn how to play and solve the picross

puzzles easy without the help of a third party(another user).

1

2

The proposed or required building blocks for the success of this project

are:

• user

• Web-camera

• Paper with the picross puzzle (hard-copied or drawn)

• Computer

• Screen

Below is a figure showing how the above proposed requirements for the

success of this project are expected to work. The system is well explained in

chapter 3.

Figure 1.1: IVPS system

1.3 Description of the Problem

When playing or solving a picross puzzle that is found either in magazines,

newspapers or picross puzzles that are hard-copied or drawn in papers, it

becomes very slow and difficult to solve the puzzle due to the absence of

special effects and due to limited hints, instructions or warnings given to the

user, and sometimes users end-up giving up easily in solving these puzzles

due to the number of mistakes they make and end-up being forced to draw

the puzzles over and over again until they solve these puzzles. That process

of drawing these puzzles over and over is very tiring and tedious. A system

3

needs to be developed to help a user to solve the picross puzzles better, or

to work to minimize or eliminate the number of mistakes that a user makes

when he/she solves these picross puzzles.

1.4 Expectations from the Solution

The system needs to successfully help the user to play and solve a hard-copied

or drawn-in-paper picross puzzle. Listed below is what is expected:

• A user has to be able to draw or at least find a paper that has a picross

puzzle.

• A camera has to be pointed at the paper with a picross puzzle and has

to be able to detect the picross grid/puzzle and stores it virtually in a

computer

• A computer has to analyze the image and confirm that it is a picross

grid and apply OpenCV techniques (image processing) to the image.

• A screen has to output hints to the user, warn the user when he makes

mistakes, give the solution of the puzzle to the user and more guidelines

to the user.

1.5 Not Expected from the Solution

Solving any puzzle games found in paper other than the picross puzzles is

not part of the project scope. The user does not expect the system to be

difficult to use and even though the will be time delay the process of solving

the picross puzzles using IVPS should not be slower than the traditional way

solving process. The system should not be user unfriendly.

4

Chapter 2

Requirement Anaylsis Document

2.1 Introduction

Requirement Analysis is the process of determining user expectations for a

new or modified product. The Requirement Analysis Document (RAD) is

then the document that takes the URD as a starting point and looks at the

problem from a designer’s point of view. This means that the requirements

identified in the first chapter (URD) are analysed in this chapter and the

problem is looked from the designer’s point of view, hence the RAD focuses

on the system and software requirements. The sections of this chapter are

arranged as follows, first is the introductory section, followed by the designers

interpretation of the user requirements then we look at the related work done

i.e we identify existing solutions, we then link these solutions to this project

problem and finally devise ways to test the solution. All these sections are

integrated to complete the process of analysing the requirements stated in the

first chapter.

2.2 Designers Interpretation of the User Requirements

The IVPS system is interpreted by the user to work following these steps:

picross grid detection (using OpenCV techniques, i.e corner detection, edge

detection or line detection), picross-grid numbers detection and recognition

(using OpenCV image processing techniques, i.e hand-writing detection or

digits detection), and determination of square occupancy. More OpenCV

image processing techniques will be used, such involves conversion of a color

image into gray-scale image; binarization ,that means converting the grayscale

image into a binary image using a method known as adaptive thresholding;

then the use of morphological operations to get rid of noise in the image.

5

6

2.3 Related Work

The following subsections are the different existing solutions that are related

to the work needed to be done for the IVPS. Please note that these solutions

are briefly described, however to get the full paper(article) corresponding to

each solution, is found in the bibliography.

2.3.1 Automatic Puzzle solving with Image Processing by (5)

Their goal was to solve a puzzle using high quality reference image (or images)

and digitally reassemble the puzzle, creating an image of the complete puzzle.

They also hoped to go the reverse direction; if a user takes the picture of a

piece, they hoped to be able to use the various image algorithms to detect

where in the puzzle might go. Their methodology is given in the following

points.

1) Take high quality reference image or images of puzzle pieces

2) Use an algorithm (maybe a combination of SURF, SIFT or other local fea-

ture detector) in order to align the images

3) Find different combinations to minimize the amount of error (space) be-

tween pieces.

4) Keep matching pieces until all the pieces are matching.

5) Hopefully the end image is rectangular and normal looking.

These are the resources they needed to complete their project, they needed

puzzles, OpenCV, and Matlab. Their intentions were to do the initial part

of their project on desktop computers with high quality images, and for the

later parts of their project, they needed an android/iOS device upon which

they do the testing.

2.3.2 Visual Chess Recognition by (6)

Their goal was to correctly detect and identify a chessboard and the config-

uration of its pieces through the application of image processing techniques.

Their idea was that such an algorithm could be used to automatically record

a game between two players without the need for a digital chess set, which

can be costly. In addition, they proposed that image-based detection of chess

7

pieces is a vital step in building chess-playing robots, as the playing strategy

of the robot depends on its knowing the locations of its own chess pieces and

the pieces of its opponent. Hence chess-playing robots can be used for fun and

have furthermore been considered as an interactive toy that helps in develop-

ing the learning abilities of children.

At a high level, their algorithm performed the following steps: chessboard

detection and segmentation, determination of square occupancy, and recogni-

tion of the chess pieces. The following list discuss these steps in further detail

and were followed by a discussion of elements that they believed made the

problem easier or more difficult. Implementation was performed in MATLAB

and OpenCV using still images from a digital camera.

1) The first step was to detect the square pattern of the chessboard and

identify the individual squares. The detection techniques was generally cate-

gorized as corner detection and edge detection.

2) After the individual squares was identified, each square was then evaluated

to determine if it was occupied or not, and, for squares that were occupied, the

color of the piece that is present. This was performed using a comparison to

a reference image of an empty board in conjunction with gray level statistics

for the potential occupancy region of each square.

3) Finally, they used feature recognition to classify the chess pieces into one of

six types: pawn, knight, bishop, rook, queen, or king. They assumed no prior

knowledge of the locations of chess pieces, and the robot had to detect it by

itself from the captured image. Training images were captured from different

angles for each of the six types of pieces, with an anticipated fewer number of

images needed for pieces with azimuthal symmetry.

They encountered many complicating factors in the use of an image-based

chess recognition product: viewing the board at an extreme angle, non-uniform

lighting conditions, damage to the board or pieces, and extraneous objects in

the scene. Some other inherent challenges were edges or corners being oc-

cluded by pieces and the standard use of the same two colors for squares and

pieces, however with all that being said their project was done successfully

8

and the supporting paper is found in (6).

2.3.3 Sudoku Solver by (7)

The goal of their project was to create an Android app that could automat-

ically solve a Sudoku puzzle from images taken by the phone camera, either

in real-time or close to real-time. Ideally, the user had simply needed to aim

the camera at the Sudoku puzzle, and the app would automatically detect the

puzzle, solve it, and overlay the solution on top of the camera image.

The steps of their algorithm were the following. First, the image is

binarized using some method of locally adaptive thresholding for documents.

Then, noise had to be reduced using morphological opening. The orientation of

the Sudoku puzzle was estimated using the Hough transform. The existence of

10 vertical lines and 10 horizontal lines was used to help verify that a grid was

indeed a Sudoku puzzle. The Sudoku puzzle was then perspective-corrected

so that its grid lines were axis-aligned. The given digits in the grid cells

were extracted and recognized using template matching, and methods that

handled hand-written digits. Once the digits were recognized, the puzzle was

solved using a Sudoku solving algorithm. Finally, the results were overlaid

onto the screen image by adding perspective-transformed images of digits into

the empty grid cells of the puzzle. The full paper to their project is found at

(7).

2.4 Link these Solutions to the Problem

All the different techniques used for the above mentioned related work (projects)

will be linked and applied in the IVPS. This means the projects are all to-

gether best solutions when integrated as they yield similar output, generally

to detect a puzzle and give a solution to the user.

9

10

Chapter 3

Conclusion

The proposed system is an addition to the traditional approach of solving pi-

cross puzzles, i.e the idea is to stick with the ”pen/pencil and paper” process

that the user is familiar with. The system aims to: minimize the time that a

user takes and the number of mistakes that a user makes when she/he solves

picross puzzles by giving the user hints and warnigs to solve picross puzzles.

The provision of more hints and warnings also allows anyone to learn and play

these puzzles. Another aim is to give a picross puzzle solution immediately

to a user when she/he requires it. Here we introduce a camera, a computer

and a screen. The camera captures the picross grid found on a paper, stores

it on a computer that does many processes. The processes include computer

vision computations using an open source computer vision library(openCV)

to analyze the picross grid recorded as frames, computations that use python

algorithm to solve the picross grid and computations to provide hints or warn-

ings to the user. All those are then displayed on a screen to be visible to the

user.

11

12

Bibliography

[1] E.G Ortiz-Garcia, S. Salcedo-Sanz, J.M Leiva-Murillo, A.M Perez-Bellido

and J.A Portilla-Figueras, Automated generation and visualization of

picture-logic puzzles, Department of Signal Theory and Communications

Universidad de Alcala and Carlos III de Madrid, Madrid, 2007.

[2] H.S Hsiao and J.C Chen, Using a gesture interactive game-based learning

approach to improve preschool children’s learning performance and motor

skills, National Taiwan Normal University, No.162, Sec. 1, Heping E.

Rd., Da’an Dist., Taipei City 106 ,Taiwan, 2016.

[3] P. Li and J. Connan, Numberplate Detection Using Double Segmenta-

tion, Department of Computer Science, University of the Western Cape,

Private Bag X17 Bellville, 7535, South Africa, 2009.

[4] F. Dandurand, D. Cousineau and T.R Schultz, Solving nonogram puz-

zles by reinforcement learning, Department of Psychology, Universite de

Montreal, Ecole de psychologie, Pavillon Vanier, Universite d’Ottawa,

Department of Psychology and School of Computer Science, McGill Uni-

versity, Canada, 2013.

[5] A. Cousland, C. Ho and J. Nakamura, Automatic Silhouette-Based Puzzle

Assembly, How We Out-Puzzled Puzzling, Electrical Engineering, Stan-

ford University, Stanford, California, 2015.

[6] C. Danner and M. Kafafy, Visual Chess Recognition, cdan-

ner@stanford.edu, mkafafy@stanford.edu, Stanford University, Stanford,

2015.

[7] Y. Wang, Sudoku Solver, wangyix@stanford.edu, Stanford University,

Stanford, 2015.

13

