

BACK-END APPLICATION FOR MONITORING MESH NETWORK

By

Ajayi Olabode Oluwaseun

A thesis submitted in partial fulfillment of

the requirements for the degree of

Baccalaureous Scientiae (Honours)

University of the Western Cape

Supervisors: Prof. Bill Tucker

Co-Supervisor: Mr. Michael Norman

Assisted by: Mr. Carlos Rey-Moreno and Mr. A. Kruger

 Date: 06 November 2013

University of the Western Cape

Abstract

BACK-END APPLICATION FOR MONITORING MESH NETWORK

By

Ajayi Olabode Oluwaseun

 Supervisors: Prof. W.D Tucker

Co-Supervisor: Mr. M. Norman

 Department of Computer Science

Wireless mesh networks are complex to monitor and institutions such as University of the

Western Cape is finding some way to solve the complexity problems facing wireless mesh

network activity. Managing and monitoring remote or local internet connection on

University campus and rural area (e.g. Eastern Cape, South Africa) involves high cost of

maintenance and the cost of installing physical equipment. Thus, mesh network have the

advantage of easy-to-deploy and fault-tolerant. Organization believes that wireless

technologies are cost-effective and scalable. Students cell phone or end user devices can

connect anytime anywhere on the network. To manage and monitor mesh network activity

on University campus and rural area we propose a backend and frontend application

system. The frontend application of this project will utilize a wireless mesh network

topology visualization tools to monitor the mesh network activities on the network. The

back-end application of this project will obtain network configuration information from

different Mesh Potatoes devices and the obtained values or data will be stored in a file, and

its size will be managed. The backend application will collect information at different

moments in time according to the granularity defined on each mesh node. Particularly, the

output values (data stored) obtained on each mesh node will be parse to a centralized

database server when the traffic on the network is expected to be low (at night) and the log

files will be aged when acknowledged by the server. Therefore, the propose system will

demonstrate a practical complete system that offers solutions to the complexity, and

provide solutions to some key areas of the network problems while carry out network

monitoring and maintenance

TABLE OF CONTENTS.

Abstract ... 2

Table of Contents. .. 3

List of Tables .. 8

Acknowledgements ... 9

Glossary .. 10

Chapter 1 ... 11

Project Prologue .. 11

Introduction ... 11

Motivation ... 12

Planning a Mesh Network ... 13

Monitoring of Mesh Network ... 14

Chapter 2 ... 15

Requirements Document ... 15

Introduction ... 15

User’s (Network Manager) View of the Problem ... 15

Brief Description of the Problem Domain .. 16

What Is Expected From the Software Solution ... 16

Constraints .. 16

System Users (Network Manager) .. 17

Chapter 3 ... 18

Requirements Analysis Document (Rad) .. 18

Introduction ... 18

Designer’s interpretation of the user’s requirements .. 18

System Architecture .. 19

Hardware Configuration Component .. 21

Mesh Potatoes (MP) .. 21

Backend Database Servers (MP_DB Server) .. 22

Software Configuration Package Component ... 23

High-Level Design of the Solution ... 25

Data Collection Design ... 25

Routing Protocol Functions .. 26

Behaviors of Wireless Mesh Networks. .. 26

Chapter 4 ... 27

User Interface Specification .. 27

Introduction ... 27

Design Overview of the Project Integration ... 27

Mesh-Mode Wireless Network Design ... 28

Design Interaction between PC and Mesh Potatoes (MP) .. 29

Chapter 5 ... 33

High Level Design .. 33

Introduction ... 33

Design Architecture for Monitoring Mesh Network Only For the Backend App. ... 33

Bash Script Monitoring Component ... 34

Mesh Dash Design Schema .. 39

Chapter 6 ... 41

Low Level Design ... 41

Introduction ... 41

Pseudo-code for mesh routing. ... 41

Network Input Parameters .. 41

Script Modules .. 42

Node Statistics .. 42

User (Network Manager) Design Role (Role-Based Security) ... 45

Business rules.. 45

Chapter 7 ... 47

Implementation ... 47

Introduction ... 47

Architectural View of the Project Implementation Using Extract, Transform, and Loading Concepts 47

Structured Program Implementation ... 48

File Redirection and Pipes Implementation .. 49

Implementation of MySQL Database with the Perl Program ... 50

Database Management Notation and Conventions ... 51

Main Database Operations .. 52

Insertion Operation ... 53

Common Regular Expression Used .. 54

Chapter 8 ... 56

Testing .. 56

Introduction ... 56

Testing Strategies .. 56

Performance Testing ... 57

Unit Testing .. 63

Security Testing .. 67

Recovery Testing .. 68

Testing Issues and Results .. 69

Chapter 9 ... 71

Code Documentation & User Installation Guides ... 71

Introduction ... 71

User Guides and Installation ... 71

Mesh Application System Installation Guides .. 72

A Simple Mesh Potatoes and Cron Jobs Set Up ... 75

Mesh Application Setup (Server) .. 76

Chapter 10 ... 79

Future Recommendation And Project Conclusions .. 79

Future Recommendation ... 79

Conclusion .. 79

Appendix A ... 80

Project Plan and Timeline ... 80

Appendix B ... 82

Perl Program: ETL activity program for the Mesh Potatoes ... 82

Appendix C ... 83

Mesh Potatoes: A shell program on MP for collecting a varies value collection ... 83

Appendix D ... 84

Mesh Potatoes: A shell program on MP for collecting static data log .. 84

Appendix E ... 85

Cron Jobs setup for both Static and Dynamic data collection .. 85

Appendix F.. 86

A program for getting data collection out of Mesh Potatoes .. 86

Appendix G ... 87

Performance Testing Program .. 87

Appendix H ... 91

Back up Program for Database Recovery ... 91

Appendix I .. 93

Aging Script .. 93

REFERENCES .. 94

LIST OF FIGURES

Number Pages

Figure 1: Diagram showing an illustration of designer’s .. 18

Figure 2: Diagram illustrating the System Architecture .. 20

Figure 3: Diagram of Asymmetric routing for Mesh Network ... 26

Figure 4: General Overview of the Project Design ... 28

Figure 5: Mesh Potatoes design set-up ... 29

Figure 6: The design interaction between PCs and Mesh Potatoes.. 29

Figure 7: Log on to a client terminal through a PC to log onto the MP. ... 31

Figure 8: A shell scripting program for collecting the log files from the Mesh Potatoes 32

Figure 9: Mesh Potato Design Architecture for Monitoring Mesh Network ... 33

Figure 10: Flow chart representing project file extractor sequence .. 37

Figure 11: Network Manager Use Cases .. 38

Figure 12: Database server, the logical design architecture ... 39

Figure 13: Entity Relationship Diagram for the Mesh ... 40

Figure 14: MP Login: The role based security permission .. 46

Figure 15: General Overview of the Project Implementation ... 48

Figure 16: MySQL Database Integration with the Perl Program .. 50

Figure 17: Execution Snap-Shot ... 59

Figure 18: Mathematical Representation of Execution Time ... 60

Figure 19: Graphical Representation of Execution Time ... 61

Figure 20 Graphical Representation of Execution Time... 62

Figure 21: Setting Up Condition for Our Unit Tests .. 64

Figure 22: Call Program Method or Trigger ... 65

Figure 23: Code Verification for Insert Methods .. 66

Figure 24 Unit testing Overview ... 67

Figure 25 Unit testing Overview ... 68

Figure 26 Backup Code Overview .. 69

Figure 27: Main Integration Setup .. 77

LIST OF TABLES

Number Page

Table 1 Hardware Specifications of the Mesh Potatoes Routers 21

Table 2 ‘node_status’ 43

Table 3 ‘node_Configuration_information’ 44

Table 4 ‘node_neighbours’ 44

 ACKNOWLEDGEMENTS

I take this opportunity to express my thoughtful gratitude and profound regards to my

supervisor Professor Bill Tucker, and my co-supervisor Mr. Michael Norman, Mr. Carlos

Rey-Moreno and Mr. Andre Kruger in the Computer Science department for their great

guidance and constant encouragement through the course of this first part of my project

thesis delivery. Your encouragement towards this project and where I am, where I will be,

and where I am going shall go a long way in the journey of my life. In addition, I take this

opportunity to express my deep sense of gratitude to Thrip, Centre of Excellence (CoE) for

sponsoring my honours project. My most respected brother and reliance friend, and

guardian Dr. T.E Oni, I am very happy to have come across you and your family. My

encounter with you has brought in success. It has, and will always give me hope to live up

to my dreams and achievement. My prayer to you and your family is that God will raise

you beyond your doubt and fear, and you will be celebrate for as long you are alive. I will

never forget that moment you clothed me, sheltered me, and taking care of me as a son and

brother. You are the best. God bless you and your house-hold.

Lastly, I thank Almighty, my parents, brother, sisters and friends for their constant

encouragement without which this project would not be possible.

Yours Sincerely,

Ajayi Olabode Oluwaseun

GLOSSARY

API Application Programming Interface

ETL Extraction Transformation and Loading

SS Source System

TS Target System

B.A.T.M.A.N-ADV Better Approach To Mobile Adhoc Networking Advance

DBI Database Interface

DBD Database Driver

ODBC Open Database Connectivity

MP Mesh Potatoes

Wi-Fi Wireless

WLAN Wireless Local Area Network

OS Operating System

SCEN Small Campus Enterprise Network

CLI Command Lines Interface

 LAMP Linux Appache MySQL PHP

Chapter 1

PROJECT PROLOGUE

Introduction

A mesh network is a wireless local area network (WLAN) where each node is connected to

others nodes. Wireless mesh networks are configured to allow wireless connections to be

routed around fragmented paths with each signal hopping from node (source) to other node

until it reaches their destination. Wireless mesh network is self-healing and self-

configuring. Self-healing is the ability of the wireless mesh node or Mesh Potatoes (MP) to

be perceive as not operating correctly and, without human involvement, it then further

make the necessary changes to restore itself to normal operation. When such nodes in the

network become broken, self-healing mechanisms aim at reducing the impacts from the

failure, for example by adjusting parameters in mesh mode using some configuration

commands so that other nodes can support the users that were supported by the failing

node. Likewise, self-configuration strives towards the plug-and-play paradigm in the way

that new mesh typology setup shall automatically be configured and integrated into the

network. However, wireless mesh networks are difficult to monitor and its network activity

(such as performance) is difficult to manage and maintain, also protocols and services are

becoming more complex to manage.

Hence, we propose a system to help addresses and proffer solutions for solving the

complexity facing mesh network.Most importantly, wireless mesh network operate

between layers 1 and layer 3. They are packet-switched networks with a static backbone

[1]. More so, wireless mesh network (i.e. Wireless-Fidelity (Wi-Fi)) nodes which

comprises of Access point (AP), and clients access (CA). Each mesh node supports

wireless connections that are cost-effective, and a convenient way to setup a mesh mode

network for department (e.g UWC Computer Science Department), and in rural area (e.g.

Mankosi in Eastern Cape, South Africa) that don’t have internet connections.

In addition, each node will operate not merely as a host but also as routing devices (Mesh

Potatoes) that will serve as either a gateway or remote gateway to assist in Wi-Fi

connection. Using these Mesh-Potatoes as a router (Gateway) on the network will provide

a secure data transmission and will help to forward packets to other nodes that may not be

within uninterrupted wireless transmission range of their destinations [2].

The goal of this project will be to create a backend application that will enable the

management of network data, the configuration of a remote gateway on mesh network, and

the rate used with each neighbor on active link quality. Moreover, for this project to

complete, we also propose a frontend application that will use visualization tools to display

nodes information as well as icons on a topographical map and some indication of link

quality between nodes.

Additionally, the application is to overlay the entire network display on a geographical

map, and provide node information when the corresponding node icon is clicked on. These

are important features on network visualization, and are something which SCUBA lacks

[3]. This project will enable the integration of wireless mesh networks (Wi-Fi) activity

with database management system to help feed the frontend visualization displacement

[3,4].

Motivation

Like other institutions e.g. the University of the Western Cape has seen the usage of

wireless technology blowup over the past few years. It was not long ago that some

universities discover the use of wireless technology. Wireless mesh networks requires

proper network database management system for its data transfer or communication. The

need for a frontend and backend monitoring application system for wireless mesh network

is to save the network manager from manually storing and analyzing network accounting

information data. Since monitoring mesh network is complex, the project proposes to

develop a system that will help the network manager to monitor and to help solve the

complexity facing mesh activity. For instance, the propose system will help the network

manager to minimize the space occupied by the log file. After that, by ageing the log file it

from the network device (Mesh Potatoes) when outputting data information for decision

making process.

More so, the propose system will help frequently checking the values or mechanisms to

compress the data explored before they are send to the centralized database server. The

system will determine the flexibility of packet exchange between each node on the

network. A poor link quality between two routers could indicate a problem with one or

both of the routers, and hence a problem in the network can be identified. Hence, the

representation of link quality in a database server can aid in fault management (because

problems in the network can be identified), performance management (network

performance can be improved if poor-quality links are discovered in routing table), and

accounting management (a poor-quality link could also indicate an extremely high amount

of network traffic on that link).Thus, because of the growing number of data on mesh

devices, this project will develop an application system, particularly a backend application

for monitoring mesh network activity.

More so, this project proposes to use an agile methodology approach. The reason for this

approach is to manage changes and reduces risk management at any time anywhere.

Therefore, this project finally proposes to help the network manager to solve and evaluate

the network metrics, and determine the quality of the links on the network.

Planning a Mesh Network

For effective communication and information sharing institutions (e.g. UWC) are

increasingly relying on computer networks and communication tools, such as computers

software. This project will set up a mesh mode network that will enable the network

manager to access remote networks, the databases server, and other applications within the

same network as well as other private or public networks. However, implementing this set

up is a complex task. This project will need to consider the goals of the institution e.g.

UWC or the rural area in Makosi Eastern Cape while making a decision on which

accounting information is needed.

This project will also consider the network infrastructure which consists of the physical

and logical components that are required to meet the networking needs of an organization.

The physical components of the mesh network infrastructure are computers, servers,

routers (Mesh Potatoes), switches and network cables. The logical components are the

software that will be used to enable the flow of data transfer or communication across the

mesh network.

Monitoring of Mesh Network

This project proposes some network parameters, that is, how to use and setup a mesh

network with b.a.t.m.a.n-adv. The idea is to collect and store these network values and use

it to monitor the mesh network activity. For instance, “batctl” holds the commands “ping,

traceroute, tcpdump” that provides a suitable way to configure the batman-adv kernel

module as well as showing debug information (such as originator tables, translation tables

and the debug log) [4]. This project will further configure interfaces, check the quality of

links and performance, nodes connectivity, and rate info. However, this project will limit

its discussion on some batman-adv commands only as the full topic is beyond the scope of

this project.

Chapter 2

REQUIREMENTS DOCUMENT

Introduction

This chapter discusses and presents the user requirement for the proposed system. It

explains what the user view of the problem is, and briefly describe the problem domain.

The chapter further explains what is expected, and what constraints are applicable. More

so, this chapter was compiled as a result of several literature reviews and information

gathered from the University of Western Cape library repository.

User’s (Network Manager) View of the Problem

Monitoring mesh network activities can sometime be complex. This ranges from obtaining

and storing network values, different instances of the value, links quality, and performance.

Some network parameters are kept and cause huge amounts of data on the mesh network.

Currently, institution such as UWC network manager is using a bash scripts on the mesh

router by executing it to collect data and statistics information on the network and store

them in a text file. This can be referring to as log file. The data collected are huge and the

network manager only require less of the data for managing and monitoring the mesh

network activity as well as for troubleshooting and configuring the remote network nodes.

The typical data required by the network manager would be the values outputting from

Mesh Potatoes when debugging using the following batman-adv commands: athstats and

ifconfig to do some aggregation, and batctl o, wlanconfig, ath0 list, and rate info

parameters for doing the dynamic routing that depict link quality and performance. The

network manager will want to inject traffic, copy the data and view the information to have

a continual awareness and to avoid traffic jam or congestion.

In addition, the network manager will want a centralize database server to manage the

network values that are collected in order to feed the frontend of the proposed system. The

relevant data that are being stored in the centralized database server will be presented to

the frontend application to allow the network manager to monitor and visualize the

network activity within the internal nodes of the network.

Brief Description of the Problem Domain

A user such as a network manager needs a network monitoring system to help manage and

monitor mesh network activity. The network manager will execute different network

protocol commands to collect data and store them into a centralize database. The used of a

configuration files will help the network manager to populate the centralize database server

with the most relevant data and to keep track of different parameters used during network

debugging. More so, the network manager is looking for a way to curtail the time

expending on collecting data from each mesh nodes, and to increase the effectiveness of

the data transfer between a node and the centralized database servers.

What Is Expected From the Software Solution

The software is expected to establish a remote access network connection between the

local organization (e.g. UWC) and the remote site (e.g. rural area) where network activity

are taken place and can be monitor. The network values or executed parameters for

connection is expected to utilize low resource memory space of Mesh Potatoes devices, be

secure and reliable, and increase the effectiveness of the data transfer between the routing

protocols (batman-adv) and the centralized database servers. More so, the network

manager is expecting the software to manage and monitor mesh network activity in an

effective way that is cheaper and affordable by the institution and rural community. The

software should investigate the batman-adv routing protocol that will offer an essential

diverse approach to route network traffic of each nodes to any destination in the network.

Similarly, the software is expected to help the network manager to save time expending on

data collection. That is, the more time the network manager requested output from the

mesh network activity the better the quality of the information he will get or have to make

decision. Therefore, the software is expected to save the device storage space (of the mesh

potatoes) to a minimum level when analyzing and populating the centralize database server

with the most relevant data information.

Constraints

The software is not expected to override existing system functionality. It is important that

this is taken into consideration when planning and designing the software solution. The use

of the software should not disrupt the network activity, and connection between each node

on the network when sending or receiving packets from source and target system. More so,

the software is not expected to consume device space and network resources.

System Users (Network Manager)

The network managers or system administrators are the people who will be using the

system to perform administrative tasks. They will be able to efficiently administer the

network with a minimum of personnel and stress. Likewise, they will gain a broad, cost-

effective view of what is required to setup an efficient software application for monitoring

network activity. In addition, the software developers are fundamental in this project as

they are the primary programmer of this particular software.

Therefore, this software for monitoring mesh network activity, it will help and target the

time network manager expends collecting and aggregating data by reducing it to a minimal

level and also reduces the manually made mistakes when computing the most important

data for decision-making process.

Chapter 3

REQUIREMENTS ANALYSIS DOCUMENT (RAD)

Introduction

This chapter discusses the requirements analysis of the system using the Village Telco

device (the Mesh Potato routers) as a key factor for requirement analysis. The chapter

further discusses the hardware, software and high level requirements needed to implement

the user requirements of the problem domain.

Designer’s interpretation of the user’s requirements

The following diagram figure 1 will depict the network design requirement (network

infrastructure diagram) for the proposed backend application system. Since a user

(Network manager) wants systems that will help him carry out daily network monitoring a

mesh mode infrastructure will be set-up to address how the user’s requirement will be

implemented later at implementation stage of this project.

Figure 1: Diagram showing an illustration of designer’s

Interpretation of problem domain

The above figure shows a backend network infrastructure diagram, to the right of the

design requirement the network manager was trying to configure a router (Mesh Potatoes)

on the wireless mesh network using Linux as the operating system. On the left of the

diagram, a wireless mesh network was setup to allow wireless local area network (WLAN)

or Wi-Fi connectivity so that the network manager who wants to configure, monitor or

query all nodes on the network for their connectivity information can configure the router

locally or remotely using the remote access gateway.

Each node MAC address will be marked with their hostname to enable easy node

identification and for easy lookup of the IP address (e.g. 172.16.*.*). Moreover, the

network manager will want to examine and monitor the quality of the link, node

connection and signal strength. This setup can be seen to be a complex network setup

however this project proposes a solution to solve the network complexity. The network

parameters set up will be break down and will be analyzed. After breaking down the

problem, the information from the network will be computed into database management

system to assist the frontend application system.

This suggested solution will best suit the operation and running process of the wireless

mesh network. That is, organization will be able to increase the number of routers as per

the requirements and increased the network traffic. Each node will learn routes using a

very stigmeric approach [1].

System Architecture

The system architecture for this project (e.g. backend application for monitoring mesh

network activity) will comprised of two main components namely; the hardware

configuration and the software configuration package. These two components will be

outlined and then broken down into more defined sub-components at a later stage of the

software development life cycle.

This project will employ the concept of data mining using Extract, Transform, and Load

(ETL) for its database management system. Each sub-component will be responsible for

the remote or local configuration for mesh networks. The hardware component will further

discuss the hardware of the mesh devices (Mesh Potatoes) and the software necessary for

the data collection for storing the networks values into the centralized database server. In

the same way, the software component will be used to gather the required necessary

network accounting information that the network manager wants to see on the frontend

application. This backend application is expected to help and make available information

needed to supply the front end monitoring system for easy access, nodes visualization, and

monitoring. However, to gather the required network information, it is important to ensure

that the mesh devices, computers system, and switches are part of the network and have the

right configuration setup.

Therefore, nodes on the network will communicate with each other nodes in the network.

More so, a Perl program will be used in this project to help query and analyze the entire

mesh node on the network for relevant data information. Such information will include

network of the next neighbors, link quality on the mesh network and connection strength to

neighbors, network traffic, and rate info for maximum and minimum throughput of the

nodes on the network. The following figure 2 shows a sample of system architecture to be

implemented for this project:

Figure 2: Illustrating the System Architecture for Requirements Analysis

Hardware Configuration Component

The hardware configuration component will include the mesh potatoes device, switches,

network cables, and computer system. This part of the project will be implemented

incrementally to tackle the network manager view of the problem. The fundamental sub-

components in this project include mesh potatoes and the backend hardware’s.

Mesh Potatoes (MP)

The mesh potato which is a wireless router will be connected to the switch, and the

computer system will be part of the network to form an ad hoc mesh network. This ad hoc

mesh network will enable the execution and evaluation of the back end application for

monitoring the network activity. The diagram illustrated in the table 1 shows each network

node and their main contribution to the ad hoc wireless mesh network.

Furthermore, the mesh potatoes devices utilize an Open System Interconnection (OSI)

Layer 2 protocol, even layer 1 of the OSI protocol and will basically act as one main router

(Gateway), transparently connecting all the attached devices together. Mesh Potatoes have

the Village Bus module installed, which act as an interface for all the data stored on them,

such as their accounting information and connection to neighbors. The hardware

specifications of the Mesh Potatoes routers are given below in the table 1:

Hardware Details

Processor MIPS 4k 180 MHz

Memory 16Mb Ram, 8Mb flash EEPROM

Wireless LAN, WiFi IEEE 802.11b/g 2.4 to 2.462 GHz

frequency band Omni directional

Antenna

Wireless Configuration Ad hoc mode

Firmware Linux kernel 2.26.3 Small Campus

Enterprise Network software (SCEN) or

Customized OpenWRT, B.A.T.M.A.N

Advance routing potatoes

Table 1: Hardware Specifications of the Mesh Potatoes Routers

The Mesh Potatoes hardware configuration and software management in the table above

will be accessible via browser or Linux terminal sessions with an access to the core Linux

operating system kernel, OpenWRT or the Small Campus Enterprise Network software

(SCEN). Mesh potatoes use batman-Advance (as seen above in the table) for its mesh

network routing protocol. A number of these devices will be used in this project to provide

data for the network activity. Each MP device provides Wi-Fi Access Point (AP) for

connection, and allows collection of log file automatically using a scheduler tasks e.g. a

scripting program (crons) which is responsible for optimizing the collection various logs,

and also for analyzing the mesh activities. An Ethernet cable will be used for

communicating and to connect the Mesh Potatoes to a source system. This will allows the

network manager to setup the wireless local area network (WLAN) and Wi-Fi gateway.

In addition, a personal computer (PC) and a network cable will be connect to a network

switch using the Ethernet port of the Mesh Potatoes node to gain access to Wi-Fi which

will enable the network manager to connect anytime anywhere. One key factor that is

essential to take note in this project is that once a Mesh Potatoes device is connected via

Ethernet cable to a LAN router (MP), then devices on the LAN will gain access to local or

Internet connection as well as gain access to the LAN resources to help the network

manager to connect to any of the ports on the network.

Backend Database Servers (MP_DB Server)

The backend database server is a central repository component of this backend application

system and it will help with storing and retrieving capability which will allows the network

manager to insert, update, and query nodes that are on the ad hoc mesh network [3]. A

computer system will be setup to cater for the operation and running of the mesh network.

The backend database server will have the following specifications: IBM Sun Solaris Ultra

20 Workstation, AMD Opteron 64bit, 1800 +CPU, 1GB RAM and 80GB SATA2 hard

drive. This database server will be able to manage a very large data communication on the

mesh network and also requires constant network monitoring and retrieval. However,

research shows that IP networks are difficult to manage (a side effect of their decentralized

nature); protocols and services are becoming more complex [5].

Furthermore, through this backend database server its primary goals are to minimize

storage space or memory space of the device by ageing the log file on the MP and hence,

this will be done during the local or remote network configuration set-up. Analysis of

network traffic and the performance log file during monitoring and debugging will also be

kept at a reduced space on the Mesh Potatoes. In addition, this project has foreseen the

need for a structure query environment and adaptability which is most evident to the

network manager.

One significant problem with mesh network is the high rate of data generating per day

hence, if the analysis of data could be done on-the-fly, this project will offer capabilities

that current system such as SPUD [6] cannot provide. The backend application server

would be lightweight stream query processing systems instead of the traditional database

type (one that cannot handle large data). This system will be at least be as fast as a hand-

written system when querying the database to present at the frontend application which

will allows the user (network manager) to by-pass the query system as needed.

Software Configuration Package Component

This project will implement a software application for downloading and collecting the

mesh network data. This collected data will be analyzed and stored into the backend

database server for easily accessibility for the frontend application. How this will be

achieved will include the following sub-components lists namely: Small Campus

Enterprise Network (SCEN) or OpenWRT, Application File Extractor module, Better

Approach to Mobile Ad hoc Networks (B.A.T.M.A.N-ADV), and MySQL Database

Application Software. Brief description of the sub-component lists is as follows:

Mesh Potatoes Small Campus Enterprise Network (SCEN) or Openwrt Firmware

This project will use the Small Campus Enterprise Network firmware that is designed to

allow a connection of Mesh Potato devices to provide a data and Internet network for a

small campus. The intended use will typically be for a small/medium size organization

which needs to set up mesh network for a geographical area. This will allow the network

infrastructure to be wirelessly connected without the use of conventional LAN cabling.

The meshed MP devices will utilize an OSI Layer 2 protocol and act as one large switch

that will connect all other network devices together. In this project, each MP device will

provide an Ethernet cable connection, and a Wi-Fi Access Point. PCs and other network

devices will be connected to the Ethernet port of a Mesh Potatoes, or they will be

connected wirelessly to the Wi-Fi Access Point of each Mesh Potatoes.

Application File Extractor Module

An application file extractor module will be programmed using Perl and bash scripting

language. This will help load data into the database server. It will also extract the relevant

data from the Mesh Potatoes devices (configuration files) to minimize and save the Mesh

Potatoes memory space. The file extractor will help to collect relevant data logs and usage

information from the mesh network activity and load them in the back end database to help

the network manager for making decision based on the quality of link (QoS) getting from

the ad hoc mesh network.

Better Approach to Mobile Ad hoc Networks (b.a.t.m.a.n-adv)

In this project, the B.A.T.M.A.N-ADV routing protocol is a form of a Linux kernel module

operating system and operate at ISO/OSI layer 2 level [2, 6] protocol. This routing protocol

will proactively maintain information about the existence of all nodes on the network that

will be accessible via single-hop or multi-hop communication links. The main purpose of

routing protocol in this project is to help determine for each destination on the mesh one

single-hop neighbor or multi-hop links. These links (neighbor IP address) will be utilized

as a best gateway to communicate with the destination node.

However, how the batman-adv routing protocol will be achieved in this project will be that

all nodes will periodically broadcast packets that are known as originator messages to its

neighbors. The originator messages will consist of an originator address, sending node

address and a unique sequence number. Each neighbor changes the sending address to its

own address and re-broadcasts the message. While at the receiving end of the mesh node,

the originator does a bidirectional link check to verify that the detected link can be used in

both directions. Batman-adv will optimize data flow through the mesh potatoes when

injecting traffic or correcting forward errors.

MySQL Database Application Software

MySQL will help with the project implementation. These include running MySQL

database on the Linux operating system to serves as the main server to the source system

and then supporting the file extractor modules. This means the file extractor module will

directly be connected to the MySQL database to help in the frontend implementation. All

relevant data values will be collected and loaded into MySQL database to facilitate the

frontend application system for monitoring the mesh network activity.

High-Level Design of the Solution

The network manager will interact with the backend system to troubleshoot, configure and

manage the Mesh Potatoes (MP) router. The network manager will further collect the

necessary values to store in the central database. This part of this project will show the

internal overview of the routing protocols for mesh-node with BATMAN-ADV

configuration snippet on the Small Campus Enterprise Network. The high-level

configuration design will include the key data collection design, key routing protocol

functions and the expected behaviors of wireless mesh network.

Data Collection Design

This sub-part of this project will include collecting the values that are relevant to the

managing and monitoring of the mesh network activity. This will help the network

manager to facilitate easy network communications and the link quality of each network

node. However, this data collection design will be an open arena for possibilities to make

changes with regard to the distribution of data collected from each MP on the network for

populating the database. Whenever possible and appropriate, the database designs

structures will consider and allow direct access of the target system to store data collected

from either local or remote configurations.

Routing Protocol Functions

The following figure 3 illustrates routing scenario using an asymmetric routing when

setting up b.a.t.m.a.n-adv routing concept [2]. This project will use this concept to design a

wireless mesh network of each node such as; node A, B and C are connected via

asymmetric links then, every node will have a good transmitting power (Tx) connection to

one neighbor and a good receiving connection (Rx) from the other node on the network.

Therefore, the routing protocol that this project will use is to discover the best neighbor

towards any of its destination. Also the routing protocol will helps with the node to find the

best path on the mesh network.

Figure 3: Diagram of Asymmetric routing for Mesh Network

Behaviors of Wireless Mesh Networks.

This project will ensure that the rate used on individual Mesh Potatoes (with each

neighbor) will allow easy data communication and better quality of service (wireless

links). This project will also allow the network manager to keep track of the expected time

to send packet to a remote network on another region (e.g. rural area) during remote

accessibility as well as avoid traffic congestion during peak hours.

Chapter 4

USER INTERFACE SPECIFICATION

Introduction

This chapter discusses the design of the system and describes exactly what is expected

from the user interface, what it will look like, and how the network manager will interact

with the system. The user interface specification for this project will be represented in

either a graphical user interface (GUI), command line interface (CLI) or an application

programming interfaces (API). We developed a web based application to allow the

network manager to monitor and help in the management of the mesh network. To develop

and evaluate the software, we constructed a mesh network (Ad-hoc) test bed of our own

using the same hardware and software used by the Village Telco (the Mesh Potato routers

SECN) [6].

Design Overview of the Project Integration

This project will be designing and developing the frontend and backend application [9, 10]

for mesh networks which will mainly focus on network monitoring system (i.e. by

frequently checking the network performance, link quality etc.) and on autonomic network

configuration. As a future work, we intend to integrate the frontend and backend

application into a single one, using the visualization tool as the graphical interface to

access all network services or activities.

As we had partially provided in our prototype solution figure 4, our main idea will be to

build a complete network management system where all kinds of data stay on the same

platform and the network manager decides the type of information to view on the mesh-

dash. The frontend application of this project will be aggregating data from the server and

presents the information gathered as topology visualization for the network manager to

view the activity on the mesh network.

The motivating factor for this topology visualization was that network manager needs to

view and see how the nodes on the network are naturally organized as well as their

geographical displacement of nodes [11]. That is, the topology will help us to combine the

aggregated data and presents them on a richer map for viewing by the network manager,

allowing the network manager to quickly access all broader data about the network. For

instance, the quality of all links or the number of authenticated users on each node, and

with a simple request the network manager could receive more detailed data on specific

nodes, such as the names of authenticated users, performance metrics like memory

consumption or recent activity history.

The ultimate objective of integrating the frontend and backend application is to pave a new

way of visualizing the wireless mesh network whenever they are seen as a scatter graphs

under a controlling monitoring and managing system application. In other words, it will

enable the network manager to understand and gather needed network information in a

faster and easier way than before with a disperse set of tools.

Figure 4: General Overview of the Project Design

Mesh-Mode Wireless Network Design

Figure 5 showed Setup called mesh infrastructure mode. This is an important part of the

project, as this is where monitoring component was developed. This design consisted of

two Mesh Potatoes and a desktop PC connected to each MP. Each MP was configured with

the same subnet mask and different IP addresses to allow packets to be sent between each

node. The PCs and the MP formed a wireless ad-hoc mesh network amongst themselves so

that a network manager will be able to monitor and visualization the activity of each node

in the network. The following figure shows the design of Mesh Potatoes with PCs when

building a shell of the user interface for the network manager test bed.

Figure 5: Mesh Potatoes design set-up

Design Interaction between PC and Mesh Potatoes (MP)

Figure 6: The design interaction between PCs and Mesh Potatoes

The following figure 6 shows the process of logging into the mesh potatoes using the

secure shell (SSH) on the command line interface (CLI). By logging into the MP it will

allow the network manager to configure and manage the router for the mesh network. The

process of getting into the mesh potatoes is illustrated as follow on the diagram:

Data Collection Interface

The data collection of this backend application design interface will be represented through

a command line interface (CLI). A user (Network Manager) will be able to interact with a

computer program using command lines. In other words, a user interface in which a

network manager type commands instead of choosing from the menu or selecting an icon.

This CLI presents the system user with several options for configuring the router (e.g.

Mesh Potatoes) with a simple-to-use interface that meets both needs and wants of the

network manager. The reason for using the CLI is that, a network manager will need to

configure the mesh potatoes using a secure shell (ssh).

A secure shell is a network protocol that allows data to be exchanged using a secure

channel between two networked devices. In addition, using the CLI, a script will be run on

the mesh potato to collect data. That data is stored in a file, and its size managed. That data

will be transferred to the central server. The server will employ the concept of data mining

using extract, transform, and load (ETL) to parses the file to pick out cumulative and

snapshot data-points that will be inserted into the database. The database in Figure 5 will

be used to automatically populate the graphical user interface (GUI) of the frontend system

of this project.

Figure 7: Log on to a client terminal through a PC to log onto the MP.

We then collect the data the log file from the MP for processing, transforming, and loading

it into MySQL DB. The following figure 8 shows the screenshot of the executed script

using the CLI during the process of collecting the data into a log file. Figure 7 help to

shows the illustration of the physical design of the process to collect data from the Mesh

Potatoes. The CLI will enable the network manager to run a script for collecting the

configuration information (e.g. ifconfig) from the mesh potatoes.

By running the script (e.g. executing batctl o) on the mesh potatoes, it will gathered some

configuration information and stored the output in a log file. The log file will be collected

for extraction to pick out cumulative and snapshot data-points that will be inserted into the

database. Before parsing the log file, necessary information will be transform using an

application file extractor to parse the log file to the database server for populating the

frontend GUI.

Figure 8: A shell scripting program for collecting the log files from the Mesh Potatoes

Chapter 5

HIGH LEVEL DESIGN

Introduction

This chapter discusses high level design of the project mainly for the backend monitoring.

The high level design for this project will be represented by using several subsystems. The

main reason for this is that the project spans across different layers of hardware, system

applications and operating systems platforms. Hence, each section in this chapter follows a

systematic breakdown of each of these sub components. More so, we will be presenting the

object oriented view of the system, analysis of the high level design, and we will describe

the objects needed to implement the system. Each one of these objects will be describe and

documented, and a data dictionary providing details of each object will be provided.

Design Architecture for Monitoring Mesh Network Only For the Backend App.

The following Figure 9 shows the mesh potatoes architecture view of the backend for

monitoring mesh network. This project will discuss each section of the architecture

component and explain how each of the smaller modules interacts with each other. This

project will be using a script (e.g. Perl script) that will enable easy communication with the

network through Village Bus. The Perl script will be located on the server (PC) and it will

be divided into smaller modules where each module contains the information needed to

communicate with the network. This project further discusses each module as follows:

Figure 9: Mesh Potato Design Architecture for Monitoring Mesh Network

Bash Script Monitoring Component

The bash script is placed on the server, since it is concerned with network communication.

Here we will discuss all its modules as follows:

Network Data Values

This module design is the main source of information that will be needed and it will be

responsible for collecting data from mesh potatoes and also keep a logfile of the

information collected to setup mesh network (i.e. MeshDash), and making it available to

other modules component. With this logfile, we will extract or collect the relevant

information needed to present to the frontend app of this project for the network manager

to visualize. However, some of these outputs are varying every instant (like the

information from wlanconfig command which gives the RSSI from every neighbor,

or batctl o which gives the batman metrics to reach every other node in the mesh network).

More so, the fluctuated instant are cumulative when executing these commands like;

athstats, uptime, stats from minstrel, whereas others would remain fixed (i.e. configuration

files in /etc/config/ and /etc/bat-hosts).

Therefore, the idea for the backend was collecting these information’s at different

moments in time (according to the granularity defined for each of them), keep them in the

node parsed and compressed if required/needed, populate them to a centralized server

when the traffic in the network was expected to be low (at night) and age them when

reception was acknowledged by the server. Note that all the process except the aging will

be done using cron for scheduling the script.

Node Configuration Information

This layer will collect information about every mesh node on the network and they will be

store on the database server. The node configuration info will contain information for both

a wired mesh relay, and wireless ‘non-mesh’ access point (AP). The wireless interface

serves clients as a traditional AP. Furthermore, it will contain the list of all the routers IP

addresses and their neighbors IP addresses.

To collect this information we will use the Perl programs to extract the necessary data

information and populate the database. The Perl program will enable us to collect the list of

each of the routers IP addresses, their byte count and their packet count. Node information

like using “Batctl commands” which is the configuration and debugging tool for batman-

adv gathered information such as MAC addresses of the MP(s) on the mesh.

Other useful commands such as batctl o as trans-local or trans-global commands to see the

local nodes (mesh only) or all nodes accessible through the mesh (global) are also captured

and store in the node config info. Likewise, using commands like /etc/config/batman-adv,

/etc/config/network, /etc/config/wireless, enable will us to capture the batman and wireless

interface to populate the central database server.

Node Status

This section store the information about links quality, performance testing, client

connectivity due to signal attenuation, interference from external devices, and the

misbehaving or misconfigured client nodes using batman-adv routing protocol. It will also

helps capture connections strenghts of various neighbors in the network.

This section further will show that a single hop IP address for a neighbor in the network

might be the best next hop to it when the network manager needed to test quality of link by

direct Wi-Fi link. However, the metric that batman-adv is using is not related to RSSI.

Batman measures the likelihood that a transmission will reach its destination. We can have

a good RSSI value, but awful packet loss. The RSSI value alone does not give an

indication that a link is actually working or performing.

Therefore, the node status will help to store the MAC addresses of each MP in the network

when checking for mesh potatoes Wi-Fi settings. These can be checked using commands

like /etc/config/wireless or via the GUI. Also we compare iwconfig ath0 on all of the MPs

to ifconfig ath0.

To test for connectivity and collect the output even if the MPs interfaces are not configured

(i.e. IP addresses have not been configured). We will use these commands like; batctl

tcpdump wlan0, batctl 00:09:45:5B:6C:98 ping, and batctl traceroute 00:09:45:5B:6C:98

with the MAC address of each MP to gather the node status and store on central database

server. We will observe that Ping gives an excellent indication of link quality. In other

words, the ping time various greatly when a packet fails to get through, the Wi-Fi protocols

are re-transmitted. Hence, re-transmission leads to variable ping times.

Nodes Statistics

This component helps to collect and store data information such as transmission power,

node channel, transmission errors, rate-info, BSSID (i.e. is the MAC address of the AP’s

radio for that service set), and SSID (i.e. is the service set identifier or network name for

the basic service set (BSS)). Thus, BSS is a set of stations controlled by a single

coordination function on the mesh network.

Data file Extractor App

Figure 10 show the sequence of steps that is executed by the network manager to use this

file extractor application. The file extract in Perl Scripting language is started and then

various intermediate phases are performed to eventually perform file data collection. The

file extractor application will help the mesh network designer (user) to deploy proper

configuration layout, access point nodes (AP) and their characteristics.

More so, this design will help the network manager to minimize network infrastructure

(mesh nodes and links). The constraints involved will satisfy demands that are placed by

Aps (and their underlying networks). Thus, the cost of monitoring and managing mesh

network will be by minimizing the mesh nodes and links.

Figure 10: Flow chart representing project file extractor sequence

Furthermore, a set of scenarios for the network manager also needs to be documented as

stated in the background part of this project. The chosen tool for this design is the Unified

Modeling Language (UML). UML use cases will be used as a representation to the

scenario taken place in the mesh network.

Moreover, the UML was chosen due to the fact that it is easy and simple for the network

manager to understand the whole concept of the project design. Figure 11 shows how the

network manager will interact with the system.

Figure 11: Network Manager Use Cases

Logical Database Architecture for Only the Backend Application

Figure 12 shows the database server architecture. The central database server will be made

up of script that takes data from the file extractor, stored it on MySQL database, and

presents it to the front-end application (Mesh-Dash), as well as the script that takes node

input, process it, and update the database. This database server enables the network

manager to know the relationships between the data in the MySQL database.

Hence, this database server uses type method to classify its structure. That is, we have view

task and Process task where each task depend on each other input and output relationships.

The following is a description of each task expected within the structure of database

architecture.

View Tasks

1. Query the database for network information to display

2. Automatically change the input of the node configuration settings on the database

server.

3. Present the information to the frontend app for network manager to visualize data.

Processor Tasks

1. Receive HTTP requests from the nodes containing network status information and

write that information to the view

2. Generate responses to those HTTP requests based on network configuration settings in

the view

3. Receive network configuration data as form input from the view components and write

the data to the database.

Figure 12: Database server, the logical design architecture for the backend application

Mesh Dash Design Schema

The database structure will be to include the information about the mesh network and the

user (network manager) who will be responsible for managing and maintaining the system.

That is, data will be contained in the backend application MySQL database. By default we

will be using the username “Mesh-Dash” to access the database, with default password

“default”.

Data Schema

The figure below (Figure 13) shows the entity relationship of the data schema for the

proposed system. It consists of the three dimension tables and one fact table. The three

dimension tables are node_status, node_config_info and node_neighbours. Each of these

tables contains a number of fields and a description of data types.

Figure 13: Entity Relationship Diagram for the Mesh Dash Design Data Schema

Chapter 6

LOW LEVEL DESIGN

Introduction

This chapter discusses low level design of the project mainly for the backend monitoring.

The low level design for this project will be represented algorithm pseudo code of the

subsystems.

Pseudo-code for mesh routing.

For all ON/OFF combination of mesh_nodes do

 // on mesh nodes which have been

 Switched ON

 For all ON/OFF combination of links & num_of_mesh_links < max_links do

 For all demands do

 If demand < remaining_link_capacity() then

 Cost cost_of_shortest_path() if cost < cost_min then cost_min

cosadjust_link_capacity()

 End

 End

 End

Network Input Parameters

1. Network elements: Number of AP and potential mesh nodes

2. Network element properties: Properties of nodes and their associated links

3. Network scenario strategy: Properties of deployment layout and node distribution

4. Traffic demands: User generated traffic demands for each AP and clients

5. Link cost functions: Cost functions for fixed and variable transmit powers (TX power) and

packet loss.

6. Optimizer parameters and heuristics: Heuristics and initial settings for the optimizer

Script Modules

The following modules are described for the design model of the proposed system for the

backend application only.

Node Configuration Information:

Create a network scenario generator that enables to create scenario based on deployment

layout, configuration parameters and the number of nodes as well as a scenario to create

locations of AP nodes and potential mesh Nodes.

Node Status

For every link constructor uses heuristics to generate list of potential links, an optimization

preprocessor that enable us to constructs inputs for optimizer and demand matrix for the

constraint file extractor application verifier. The optimizer must invoke to solve MP

problem.

Node Statistics

A constraint verifier must be set to verify capacity constraints imposed on scenario by

comparing optimizer output with demand matrix. Hence, a topology generator (Mesh

Dash) must be constructs to corresponding to the capacity constrained topology. Therefore,

the network manager must carry out a simulation by using an external simulator to validate

the topology generated in order to visualize what is on the Mesh Dash.

Detailed Data Definitions for the MeshDash Entity Relationship Diagram

The data dictionary contains information describing the content of the Online Registration

System. Data is contained in the ‘MeshDash’ MySQL database. The following table gives

the detained description of each table contained in the MySQL database.

Name Type Description

Node_ID Int (10) Unique network id,

primary key (auto-

increment)

Node_IP_Add

ress

Varchar

(45)

Node IP address

Node_Mac_A

ddress

Varchar

(45)

MP Device Mac

Address

Packet_Trans

mit

Varchar

(45)

Node transmission

power

Packet_Reciev

ed

Varchar

(45)

Node transmission

received

Packet_Loss Varchar

(45)

Node transmission

loss

Time TIMES

TAMP

Give time stamp for

network

Table 2: ‘node_status’

Name Type Description

Node_ID int (10) Unique network id,

primary key and also a

foreign key, (auto-

increment)

Node_IP_Address Varchar

(45)

Node IP address, a

foreign key, and

Node_Mac_Address Varchar

(45)

MP Device Mac

Address

Node_Mode Varchar

(45)

Node mode either for

client or server

Node_SSID Varchar

(45)

A unique name for the

name

Node_BSSID Varchar

(45)

A unique station ID

Channel int (10) Signal channel values

Rate

Varchar

(45)

Packet rate

transmission/ Packet

transmission loss

Tx_Power Varchar

(45)

Packet transmission

values

Distance Varchar

(45)

Packet distance

covered

SlotTime Varchar

(45)

Node interval time

Diversity int (10) Distance

Tx_Errors Varchar

(45)

Packet transmission

error

Surmerge int (10) Submerged distance

AckTimeOut Varchar

(45)

Network

acknowledgement

time

MTU int (10) Message transfer

control unit

Node_Latitude Varchar

(45)

Node distance cover

on map latitudinal

Node_Longitude Varchar

(45)

Node distance cover

on map longitudinal

Table 3: ‘node_Configuration_information’

Name Type Description

Node_ID

Int (10)

Unique network id,

primary key and also a

foreign key, (auto-

increment)

Orignator_IP Varchar

(45)

Source (node) gateway

IP address

Time TIMEST

AMP

Time stamp for node

transmitting

Next_IP_Hop Varchar

(45)

Next Source (node)

gateway IP address

Potential_Ne

xt_IP_Hop

Varchar

(45)

Nearest Source (node)

gateway IP address

RSSI int (10) RSSI in Unsigned values

DBM int (10) DBM values

State int (10) Node state

Table 4: ‘node_neighbours’

User (Network Manager) Design Role (Role-Based Security)

The users will be able to login into the MP and the software application. In this system we

will have three types of people to use the system. The role lists is shown in our database

indicate that the network manager (detail about the network manager), and remote User

(include detail about remote or local user).

Business rules

Figure 14 shows the role based security permission for the design system for both frontend

and backend application. However, the following business will be apply to the design

model of the

1. There will be only one network manager (user) for a given network; means there can

be only one login for network monitoring. He is like a super user for monitoring the

network.

2. Network manager (user) can be a local user as well.

3. A single network can contain more than one local users and each local user have

different kind of rights/permissions can be configured by network manager.

4. Only remote user allowed per network and rights/permissions can be configured by

network manager.

The standard way we will model permissions for the system is through Role-Based

Security. The typical model design will looks something like this:

Figure 14: MP Login: The role based security permission

The way it works is you have three tangible things: Users, Allowable Actions (the access

that is being controlled) and Roles. Roles are groups of both users and allowable actions,

therefore there are two intersection tables which record the people in each role and the

actions that role permits. Some people include additional information in the role

membership and permission intersection tables, like when the record was created and by

whom. Some people keep that kind of audit log information in a separate table.

Chapter 7

IMPLEMENTATION

Introduction

This Chapter describes and explains our project implementation and documented code.

Each class and class method used are explain with a one-line description, and a detailed

description of the algorithm. The chapter further explains all methods that involve human

interaction concerning inputs and outputs. We further noted any caveats, that is, things that

can go wrong or things that the code does not address. Hence, the chapter narrows its

discussion on a general overview of the project (architecture) of the mesh network

monitoring component.

Architectural View of the Project Implementation Using Extract, Transform, and

Loading Concepts

In order to facilitate and manage the proposed system we use the general title Extraction-

Transformation-Loading (ETL) tools (see appendix B for source code concept). To give a

general idea of the functionality of these tools we mention their most prominent tasks,

which include: (a) the identification of relevant information at the source side; (b) the

extraction of this information; (c) the customization and integration of the information

coming from multiple sources into a common format; (d) the cleaning of the resulting data

set (log file), on the basis of database, and (e) the propagation of the data to the database.

Hence, the following figure shows and illustrates how the source system was mapped to

the targeted system. Mapping showed the relationship and data flow between the source

and target system.

In this report, our source system is Mesh Potatoes which helps to run two shell scripting

program (i.e. Dynamic.sh, and Static.sh) with a crons for scheduling the script and help to

optimize the program at vary time automatically. The Dynamic.sh is a shell program which

is responsible for collecting varying network accounting information from the source

system; help capture activity on the device and writes into a log file, while Static.sh is a

shell program which is only responsible for network values that does not change but

remains static and write into a log file. Both shell programs for extracting and analyzing

data went through the staging process before we load the required data into MySQL

database server. We referred to the whole processes as ETL concepts which have

integration with the frontend application.

Figure 15: General Overview of the Project Implementation

Structured Program Implementation

This section include code layout, the style used, and technologies employed (e.g. REGEX

in Perl language, and with Database Management in Perl). We design a meta-scheduler [an

entity which manages the mesh resources and activity to make the network usage easier for

the network manager. Example of such meta-scheduler is the Mesh-Crontab]. Since

network manager usually send a job to the target system, and from that moment on, it will

take care of any interaction with the mesh-network to get the job executed (such as

selection to resources, data transfers , authentication issues, job monitoring and

migration’s).

Further we make use of the Crontab commands, found in UNIX and Unix-like operating

systems, for timing and meta-scheduling the following programs to be executed

periodically: See Appendix E for source code.

1. Perl program to extract and transform mesh activity from source system and load it

to the targeted system e.g. Database server.

2. Dynamic and Static Scripting programs

The reason for setting up crontab is to minimize job’s completion time and execution costs,

minimizing data movement, and maximizing system throughput and resources utilization.

We set cron in Mesh Potatoes to start automatically from /etc/crontab/init.d on entering

multi-user run levels. Cron searches it spool area (/var/spool/cron/crontabs) for crontabs

files (which are named after accounts in etc/passwd). Crontab found are loaded into

memory.

Therefore, cron was to help automates system maintenance or administration—though its

general-purpose nature makes it useful for things like connecting to the Internet and

downloading the log file at regular intervals.

File Redirection and Pipes Implementation

Reading and writing in both shell and Perl language work exactly like getting input from or

sending output to the user, but with the standard input redirected to come from a file or

with the standard output redirected to a file. The shell program in this case is our source

system (Mesh Potatoes encompass both the Dynamic and Static.sh) which allows file

separation for scheduling purposes on the Mesh Potatoes:

We therefore separated: parameters that changes dynamically (include batctl o, wlanconfig

ath0 list, rate-info etc.) from others parameter that do so in an aggregated way include

athstats, ifconfig, acktimeout, slot-time, tx-power etc. More so, the shell program in our

source system allows us to; See Appendix C and D for source code

1. Check if file exists

2. If not we create the file

3. Else we open the file to edit (Open to read from it)

4. Go in a while loop

5. Reading from another files

6. Write to the end of the file (Append to file but end of file), then we close and exit

the file.

Most importantly, we realize that the true power of shell scripting lies not in the scripts

themselves, but in the ability to read and write files and chain multiples programs together

in interesting ways.

Therefore, the program in our UNIX-based or UNIX-like (Ubuntu) system has three basic

file descriptor normally a reference to a file or socket reserved for basic input and output

(often abbreviated STDIN), standard output (STDOUT), and standard error (STDERR).

Implementation of MySQL Database with the Perl Program

Perl script using the DBI methods has become very easy to write database application

using DBI. DBI stands for Database Independent Interface for Perl which means DBI

provides an abstraction layer between our Perl source code and the underlying database,

allowing us to switch database implementations really easily. DBI is independent of any

database available in backend. The DBI is a database access module for the Perl

programming language. It defines a set of methods, variables, and conventions that provide

a consistent database interface, independent of the actual database being used. The

following diagram show DBI, DBD::ODBC architecture where its define the actual DBI

application programming interface (API), the route method calls for the appropriate

drivers, and the DBI driver provides the various supports services to them. The driver

implemented in this case was the DBD:: MySQL which actually perform the operations on

the database.

Figure 16: MySQL Database Integration with the Perl Program

Perl Script

API DBI

DBD::MySQL

MySQL

RDBMS

For the Perl, we used Perl 5.8 but we only need the minimum required by the DBI and

DBD::ODBC modules which is currently 5.6. We use Perl --version to see what version of

Perl we installed. We also used DBI 1.45 for the DBI module. To see if we have a recent

enough version of DBI installed we run Perl -e 'use DBI 1.40 on the Ubuntu terminal.

Database Management Notation and Conventions

The following are notation and conventions we used in our project. Most importantly, we

follow the normal standard for naming convention and methods notations. The notation

and conventions includes: Also see Appendix B for code implementation

1. $dsn: This represent Database source name

2. $dbh: This represent Database handle object

3. $h: This includes any of the handle types above ($dsn,$sth, or $drh)

4. $rc : General return code (Boolean: true = ok, false = error)

5. $rv : General return value (Typically an integers)

6. @arr: List of values returned from the database

7. $rows: Number of rows processed (if available, else - 1)

8. $fh : A filehandle

9. Undef : Null values are represented by undefined values in Perl

10. \%attr Reference to a hash of attribute values passed to methods

The reason for the notations and conventions is to avoid inconsistency and prevent us from

having modules redundancy. Since this project is dealing with several log files. This

project further make use of syntax which defines a set of rules that enable us to combine

regular expression symbols which we considered to be a correctly structured fragment in

Perl language. This applies both to Shell and Perl programming language, where our

document represents source code, and log file where the document represents data.

Generally, syntax of a language defines its surface form [17].

Therefore, our Perl language with MySQL database is text-based computer programming

which is based on sequences of characters. We used the regular expression to extract the

sequence of characters. Documents that are syntactically invalid are said to have a syntax

error.

Main Database Operations

MySQL database support SQL transactions. This means that the network manager can

make a whole bunch of queries which would modify the MeshDashDB database, but none

of the changes are actually made. Then at the end you issue the special MySQL

query commit, and all the changes are made simultaneously. Alternatively, we issue the

query rollback, in which case all the changes are thrown away and MeshDashDB database

remains unchanged. Perl DBI module provides begin work API, which enables transactions

(by turning AutoCommit off) until the next call to commit or rollback. After the next

commit or rollback, AutoCommit will automatically be turned on again. The following

operations and method calls are discussed below. We implemented and executed each

method in our main program for the backend monitoring application program for the

network activities. Kindly note that for each method called it will help to reduce processes

time and saved system resources. Commit is the operation which gives a green signal to

database to finalize the changes and after this operation no change can be reverted to its

original position. If we are not satisfied with all the changes or we encountered an error in

between of any operation, we can revert those changes by using rollback API.

Therefore, if the transactions are simple, we save ourselves from the trouble of having to

issue a lot of commits. When we make the connect call, we specify an AutoCommit option

which will perform an automatic commit operation after every successful query.

Read Operation

This method enables us to fetch useful information from the MySQL database. So once or

database connection is established, we are ready to make a query into the MySQL

database. The following is the procedure we employed to query all the redundant data.

Also see Appendix B for code implementation.

1. We prepared the SQL query statement based on the required conditions. This was done

using prepare () API

2. We executed SQL query to select all the result from the database. This was done using

execute executing () API

3. We fetched the entire results one by one and proving those results. This was also done

using fetchrow_array () API. The fetchrow_array method returns the values of the

next row in the result set as a list, which we assigned to an array. The order of the

elements is as the order of the fields in the query (Packet_transmitted, Packet_loss in

our case).

4. We released the statement handle. This was done using finish () API.

Update Operation

This method in the source code enables us to update on the MySQL database, that is, we

update one or more records already available in the database tables. Following is the

procedure we used to update all the records in the MeshDashDB database. This will take

three steps: (Also see Appendix B for code implementation)

1. Preparing SQL query based on required conditions. This will be done using prepare (

) API.

2. Executing SQL query to select all the results from the database. This will be done using

execute () API.

3. Releasing Statement handle. This will be done using finish() API

If everything goes fine then commit the operation otherwise we rollback the complete

transaction. See next section for commit and rollback APIs.

Insertion Operation

This method is required when we want to create our captured data into MeshDashDB. The

backend application followed the procedure to create single records into MeshDahDB.

More so, we created many records in similar fashion. Record creation takes the following

steps: (Also see Appendix B for code implementation)

1. We prepared SQL statement with INSERT statement. This was done using the prepare

() API

2. We executed the SQL query to select all the results from the database to verify if we

are storing the right information into MySQL database. This was also done using

executing () API.

3. We released the statement handle. This was also done using the finish () API

4. We committed the operation if everything goes well, otherwise we rollback the

complete transaction.

Delete Operation

This method enables is required when the network manager want to delete some records

from the database. Following is the procedure to delete all the records from MeshDashDB

database. This operation will take following steps. (Also see Appendix B for code

implementation)

1. Preparing SQL query based on required conditions. This will be done using prepare (

) API.

2. Executing SQL query to delete required records from the database. This will be done

using execute () API.

3. Releasing Statement handle. This will be done using finish () API

If everything goes fine then commit the operation otherwise we rollback the complete

transaction.

Common Regular Expression Used

The following three Perl regular expressions were used in implementing the backend

application. The most commons are: (See Appendix B for the use of regex)

1. The Match Regular expression (~m//)

2. Substitute regular expression (~s///)

3. Trans literal regular expression (~tr///)

Kindly note that the forward slashes in each case act as delimiters for the regular

expression (regex) that are specifying. We further make use of the data types (that is,

Scalars and Arrays) in the Perl language to do pattern matching either to match a string or

statement to a regular expression.

Chapter 8

TESTING

Introduction

The previous chapter focused on the implementation of the backend application. It gave a

thorough documentation of the code used and explained the contribution of each part. How

each part works and make the application practical and functional. More so, the chapter

explained how each of the application components has contributed to the development of

the project. Therefore, this chapter focuses on testing criteria and analysis where different

testing strategies are used. The chapter explained in detail the security testing, unit testing,

backup and recovery testing, and performance testing for the application system. We then

evaluate the analysis and show the results. The process of testing we document it for both

the user (application itself) and the system (operating system), to ensure that the solution

meets the system requirements and that it is scalable, robust, and efficiency.

Testing Strategies

Software testing is an investigation conducted to provide stakeholders with information

about the quality of the product or service under the test [19]. We test this application to

uncover errors that were made inadvertently as it was designed and constructed [20]. This

testing will be conducted by the Network manager and the developer of the application.

We created a testing specification document which defines the plans that describes an

overall strategy and a procedure that defines specific testing steps and the tests that will be

conducted.

Now that the application is up and running, the kind of things we will need to test in the

application will include: checking all the nodes on the network runs the same batman-adv

version, checking and test the quality of the data in the application database (i.e. these

includes measures in the fact table and data in the dimension tables), and testing the script

for backing up the database (e.g. meshDashDB.sql). However, one doesn’t need to test

transactions as this is the responsibility of the ETL concept discussed in chapter 7 of this

report. To prepare for the test, we set up four Mesh Potatoes (i.e. source system are up and

running and can ping each other), and a target system (i.e. server running open source

operating system e.g. Ubuntu Server OS) running an instance of the backend application.

Then we created a real time mesh network to automate the collection of the logs from the

source system and also remotely transferring the logs to the target system to extract and

analyze.

Further, we time the cron job scheduler to collect the activities on the network and execute

the backend application program on the target system to populate the MySQL database.

Creating a password to protect the system allows non-local user to connect to the server

and also protect the system from outside threat. Thus, the database was populated by

adding more records and made MySQL database to listen to system source system via SCP

listen addresses configuration parameter. There are two different times that we need to test

our data with. We need to test it before our ETL load and also after [21]. We can then run

the regular or standard ETL process into the fact or dimension table and then re-run the test

with the new expected results. These two sets of tests are to be run on known and static

data.

Therefore, we describe the test plans, approach used or procedure to take, and the different

tests that will be conducted. Thus, this chapter of the documentation explains and uses

different testing strategies. These testing strategies include:

Performance Testing

This section of this chapter focused on testing the performance (i.e. execution time) of the

application. We install the application on the target server to manage and monitor the mesh

network. We compare the application running timing to the operating system (OS) timing

running on the device such Mesh Potatoes. Further, we compare the central processing unit

(CPU) utilization and the paging size (e.g. space occupied on the system memory) that the

application will consume when executing it on the target server (e.g. personal computer).

We then use a graph to display the timing effect and report on the number of instructions

(N) to be executed. We will assign the number of instructions (N) to execute the

application with the CPU clock cycles (e.g. average clock per instructions).

This performance testing (such as execution time and speed of the application) will address

one of the testing issues or challenges that the application will encounter while executing

the application with the mesh Potatoes. Hence, we will be expecting that the application

should utilize less CPU and memory space during the process of monitoring the mesh

network activities.

Methodology: Execution Time, and Its Short Overview

Execution time of this application depends not only on the processor frequency but may

also depend on many other factors like main memory speed and I/O speed. Thus, execution

time of this application is the amount of time it takes the program to execute in seconds.

Time (i.e. computers does several tasks e.g. elapsed time based on a normal clock, CPU

time). Computer time is time spent executing this program. Although the performance

testing of this application will be differs on several computer resources.

For instance, if computer program utilize too much of computer resource and no proper

care is taken into consideration, such program will crash the network and then leads to

serious issues. However, we will conduct performance testing to help prepare for

unforeseen circumstance and also help to improve the system resources usage.

That is, performance testing will help us to improve speed of the application when using it

for monitoring the mesh network. Execution time of this application can be divided into

two parts.

1. User time is spent running the application program itself.

2. System time is when the application calls operating system

The following figure illustrate how the User time and System time are related. They both

summed up to make up the execution time of the application.

Figure 17: Execution Snap-Shot

The figure above shows the overview of how will be conducting the performance testing.

We will then carry out the performance testing in general, particularly on the User time to

System time. Further, we will start by comparing the mesh application time to operating

system resources time, and also server CPU utilization to paging size.

Thus, our application on the target computer will run according to a clock cycle that runs at

a steady rate and time. The execution time of the application will clearly depends on the

number of instructions; however difference instructions take difference times.

Why we Tested Performance

We tested the application to provide an acceptable response time over the CPU utilization.

The time collecting the log file and running the application on a server is needed to be

tested, that is, it must be very fast and take less time to run. Performance tests are often

coupled usually both the hardware and the application software itself. In other words, it is

often necessary to measure resource utilization (e.g. processor cycles) in an exacting

fashion [20].

Performance Testing Representation: Calculating the Measuring Time

The following formula will be used for calculating the execution time (i.e. both User time

and System time). Theoretical; we will calculate the performance and speed of the

application to operating system. That is, by finding the execution time of the application to

the target computer (e.g. Server) operating system. The following figure 18 diagram show

how we will carry out the performance comparison: Mathematically, we will represent our

calculation as shown in the figure below [18]:

Figure 18: Mathematical Representation of Execution Time

Graphically, we will present the result on a graph as shown in figure 19 in the chart, and

thus we display and represent the different scenario for the comparison.

Figure 19: Graphical Representation of Execution Time

(Use time and System time versus CPU)

The figure shows the execution time for both the User time and System time and compares

the result to the CPU utilization of the target system. Further, we will compare the entire

time to the target system memory space (i.e. paging size). The execution time of the

application program clearly must depend on the number of instructions; however

difference instructions take difference times. Particularly, we find the maximum,

minimum, and average with and without load of the backend application (i.e. no other

program on the background).

Furthermore, figure 20 shows the result comparison after comparing the entire time with

the target system memory space (i.e. paging size). Therefore, we present the statistic of the

result on figure 20 as follows.

Figure 20 Graphical Representation of Execution Time

(CPU versus Paging Size)

The graph above shows the statistic results when comparing the execution time (e.g. CPU

utilization) of the application to the memory space during performance testing.

Performance testing of this backend application was carried out live to test the run-time of

the software within the context of an integrated system. Thus, the execution time of this

application is the amount of time running the application to execute in seconds. By our

calculation of the time took to execute the program, the application was executed 10 times

during which we test for the performance of the CPU and the application itself. This was

done and measured in clock cycle per seconds.

From the above performance testing analysis and illustration, we concluded that the mesh

application utilize few system resources with better execution time as well as the time it

took us to logon and collect the data log on the Mesh potatoes for extraction, transforming

and loading. Hence, this mesh application will require the network/system administrator to

dedicate a good and fast CPU computer to run the program with no background application

except mesh application itself.

Unit Testing

We will conduct unit tests on the internal processing logic of the program. The following

logic will be highlighted:

1. Functions: We ensure information flow properly into and out of the program unit

under test.

2. All program including errors handling paths are checked and tested.

To optimize our scripting application code, we will conduct the unit tests to help identify

potential bottlenecks on our program codes.

Further, we will conduct unit tests to check that we inserted the right data into the database

for the backend application usage. We will age data based on external input (i.e. an SQL

Injection Attacks will be avoided) program method. This section of the application

program is fragile and error prone, that is, both codes profiling and benchmarking are

amongst other basic debugging tools we will use for our testing procedure.

Methods

Unit tests were conducted to know if the application database integrates properly with the

Application Programming Interface (a.k.a. API) and we ensure that this integration is

effective and efficient. Hence, the unit tests help us to increase database-to-program

communication efficiency. Perl DBI modules will protect our scripting application from

MySQL injection attacks.

One important benefit of conducting unit testing is that it will give us the confidence that

our code works as we expect it to work. Unit tests will give us the self-assurance to do long

term development because with unit tests in place we will know that our foundation code is

dependable each Perl modules. Unit tests give us the assurance to refactor our code to

make it cleaner and more efficient. Unit tests also save us time because unit tests will help

us prevent regressions from being acquaint with and unconstrained when we will be

conducting performance testing. Once a bug is found, we will write a unit test for it, we

will fix the bug, and the bug will never make it to production staging again because our

unit tests will catch it in the future.

Another benefit is that unit tests will provide excellent inherent documentation because

unit tests will show exactly how our code is design and will be use. Thus we believe so

strongly in the value of unit tests that we will write for our program code. The following

are the unit tests structure and criteria we will be using to conduct our testing:

Unit Test Structure

We use the following structure for the unit testing. We ensure that the unit tests follow this

basic structure:

1. We set up conditions for our unit testing: Our script program methods declaration will

perform some sort of operation upon data collected from the Mesh Potatoes. So in

order for us to test our methods, we will need to set up the data required by each

method in our program. That is we will declare our variables as well as setting up the

method to capture right data into our MySQL database. For instance, our unit test looks

like this in figure:

Figure 21: Setting Up Condition for Our Unit Tests

2. We call our program method or Trigger and we ensure that they were being tested:

Once we set up the appropriate input data, we execute our code. Testing a method

requires us to call the method directly. In our case, we tested a trigger method called

insert function, so we perform the action that causes the trigger to execute. For example

in the figure below, we insert the following information into our MySQL database for

the backend monitoring as shown below:

Figure 22: Call Program Method or Trigger

3. We verify that the results or return were correct: We verify that our code works as we

expect it to work. If this verification fails it will show that our Unit tests do not work

hence we will check and correct the code again. A good way we confirm that our unit

tests is properly verifying results is to use my $sth->execute () methods. If this does not

work, then our tests do not verify results properly. For example our code for verifying

code for trigger look like this in the following figure:

Figure 23: Code Verification for Insert Methods

4. We clean up modified records: We clean up our record, which are the results of trigger

executions that affect existing data. However, we will only commit right information

when we get the code right and put that right information into the database. We will

insert, delete, and modify records without having to write any code that will clean up

our changes.

Our subroutine functions will be put on same files which only contain code for insert,

update, and delete definition, so these functions are located in the same subroutine class

file. The reason for same file is because Perl DBI integration works well when using all of

these functions on a role. With our subroutines classes we will always have the option to

change the internal implementation of our code should the need arise.

What We Test

Broadly speaking, we will test our code and database logic. How thoroughly we will test

that logic will probably vary between situations. That is, on one end of the spectrum, we

will choose to implement just a few tests that only cover the code paths that we believe are

most likely to contain a bug. On the other end of the spectrum, we will choose to

implement a large suite of unit tests that are incredibly thorough and test a wide variety of

scenarios. Wherever a given scenario falls on that spectrum, we will ensure to write unit

tests that verify our program behaviors as well as what we are expecting in a normal sense

and in more unexpected scenarios, like boundary conditions or error conditions. The

following figure 20 shows what we will test when doing code unit tests structure and

refactoring.

 Figure 24 Unit testing Overview

Our code refactoring as shown in the above figure, the unit testing will allow less code and

improve the performance of the scripting application program for the backend monitoring.

Therefore, performing unit testing on Perl program (such as performing benchmarking on

our Perl application with benchmark module) is extremely fast when it comes to handling

regular expression and test processing on both Mesh Potatoes and monitoring server.

Security Testing

We conducted security testing to protect against vulnerabilities. We implemented two

security elements. The two included are:

1. Authentication : Credential verification between clients and servers

2. Authorization : By supplying user ID and password

This section of testing verifies that protection mechanisms built into a system will, in fact,

protect this system from improper penetration [20]. Thus, the following diagram shows an

instance of the security protection when taking the application database backup.

Figure 25 Unit testing Overview

Furthermore, passwording the system using authentication and authorization method of

security will avoid an outsider from penetrating into the system to causes system chaos.

Recovery Testing

This is a system test that forces the software to fail in a variety of ways and verifies that

recovery is properly performed [20]. This is critical to the system recovery. We conducted

recovery testing by creating a backup of the entire database of the application. This is done

automatic using a cron job for effective correctness and better system optimization. Thus,

the following diagram shows the code overview of the backup and recovery code testing

application.

Figure 26 Backup Code Overview

Testing Issues and Results

Our testing strategy reviewed some issues which is most applicable to any network

scripting application. These include:

1. Mesh Potatoes software versions: Checking that all nodes run the same batman-adv

version. This is to avoid problems us with an incompatible versions of batman-adv

running on Mesh Potatoes. Thus, incompatible nodes will simply ignore each other.

2. Precision and inaccuracy data: Accuracy refers to the closeness of a measured value to

a standard or known value whereas precision refers to the closeness of two or more

measurements to each other. If data are not captured correctly with the right regular

expression syntax then this will affects the unit testing stage. Data must be capture

rightly and test correctly to avoid mesh network and system failure.

3. Mixed mode operation: If operation of Mesh Potatoes interferes with other wireless

around the site, then there will be network interference. It is important to take note of

this in case of future network issues. Thus, such operation will affect our program

getting the right information to present to the front end application for the network

manager virtualisation.

4. Incorrect arithmetic precedence and initialization: Wrong data calculation can result to

test failure and also affect the application logic and database.

Chapter 9

CODE DOCUMENTATION & USER INSTALLATION GUIDES

Introduction

This chapter refers the intendant to the source code for implementing the backend

application. Each source code is referred to as in appendices. Please see the appendix for

more information about this project code documentation.

User Guides and Installation

This document section focuses on the installation of mesh application system for the

backend monitoring for mesh network. The document covers the installation and basic

configuration of mesh application system. Mesh application system is an open source

implementation of a network activity for data and information capturing. Mesh application

system is a LAMP (Linux + Apache + MySQL + PHP) application that interfaces with Perl

DBI module using both the database driver (DBD) and open database connectivity

(ODBC). This documentation has been tested using Debian operating system (Ubuntu

10.04 and Ubuntu 13.10).

Installations Steps

In a nutshell installing Mesh Application requires a minimum of eight steps (1-8):

1. Mesh Application System Installation Guides

2. Pre-required software packages

3. Installing the MySQL from package

4. Installing the phpMyAdmin from package

5. Installing the Perl, DBD::MySQL from package

6. A Simple Mesh Potatoes and Cron Jobs Set Up

7. Mesh Application Setup (Server)

8. Mesh Application Database Setup

Mesh Application System Installation Guides

The document describes or gives instructions for setting up the installation and

configuration of DBD::MySQL, the Perl DBI driver for the MySQL database. The network

or system administration will ensure that the require prerequisites are available (i.e. Perl,

MySQL and DBI). This document also highlights the steps to take to install the LAMP for

both the application for collecting the log file from Mesh Potatoes and backend application

itself on the server [22].

Important note about distributions

This documentation assumes that the network/system administrator is using a .deb based

distribution that has used the folder /usr/share/ during packaging. Other distributions use

the alternate folder /var/lib/. The basic assumption of this documentation is that used pre-

packaged software such as apache2 default root folder is /var/www. Likewise,

phpMyAdmin which is a very popular MySQL management software packages will

manage the data collection. Its installation will enable the network administrator to manage

the data collection properly.

Pre-required software packages

Mesh application requires the packages of a LAMP (MySQL) and Perl DBI installation. To

install the necessary packages, the network/system administrator must run the following

commands on the terminal:

1. apt-get install php5-cli php5-mysql mysql-server apache2 php5-gd

2. apt-get install libapache2-mod-php5 php5 php5-common

LAMP applications are Wiki's, Content Management Systems, and Management Software

such as phpMyAdmin. The traditional way the network/system administrator can install the

LAMP applications is to:

1. Download an archive containing the application source files.

2. Unpack the archive, usually in a directory accessible to a web server.

3. Depending on where the source was extracted, configure a web browser to serve

the files.

4. Configure the application to connect to the database.

5. Run a script, or browse to a page of the application, to install the database needed

by the application.

6. Once the steps above, or similar steps, are completed the network/system

administrator is ready to begin using the application for the mesh application.

Installing the MySQL from package

MySQL is a fast, multi-threaded, multi-user, and robust SQL database server. It is intended

for mission-critical, heavy-load production systems as well as for embedding into mass-

deployed software.

Installation

To install MySQL, the network/system administrator can run the following command from

a terminal prompt:

1. sudo apt-get install mysql-server

During the installation process the network/system administrator will be prompted

to enter a password for the MySQL root user. Once the installation is complete, the

MySQL server should be started automatically.

2. The following command can be run from a terminal prompt to check whether the

MySQL server is running: sudo netstat -tap | grep mysql

3. When you run this command, you should see the following line or something

similar: tcp 0 0 localhost: mysql *:* LISTEN 2556/mysqld

4. If the server is not running correctly, you can type the following command to start

it: sudo /etc/init.d/mysql restart

Installing the phpMyAdmin from package

PhpMyAdmin is a LAMP application specifically written for administering MySQL

servers [23]. Thus, this helps the network/system administrator to administer the mesh

application for the backend network monitoring. Before installing phpMyAdmin the

network/system administrator will need access to a MySQL database either on the same

host as that phpMyAdmin is installed on, or on a host accessible over the network. For

more information see MySQL installation guide as stated previously.

Installation

From the terminal prompt the network/system administrator can enter:

sudo apt-get install phpmyadmin

At the prompt the network/system administrator can choose which web server to be

configured for phpMyAdmin. Once selected the rest of this installation will use Apache2

for the web server for complete installation.

To verify the Installation

In a web browser the network/system administrator can go to

http://servername/phpmyadmin, replacing serveranme with the server's actual hostname.

At the login page enter root for the username, or another MySQL user if you any setup,

and enter the MySQL user's password. Once logged in you can reset the root password if

needed, create users, create/destroy databases and tables, etc. However, in our case the

mesh application on the server together with the Perl MySQL::DBD will create the

database and tables automatically and also populate the tables with right data collection

information.

Installing the Perl, DBD::MySQL from package

This is the most essential part of the documentation which describes the installation and

configuration of DBD::MySQL. The Perl DBI driver for the MySQL database integration

actually enables the mesh application to work properly. Without this the mesh application

will not work. Thus, it is essential for the network/system administrator to take a proper

precautionary of this installation guide [25].

Installation

The network/system administrator needs to install and configure Perl DBD::MySQL.

Please note that DBD::MySQL is a DBI driver, hence network/system administrator need

DBI for this mesh application to work. For a manual installation the network/system

administrator need to fetch the DBD::MySQL source distribution. Please download the

latest version. This can be found on [24]. The following are steps to follow to download

and install the package:

1. Download from [24]. The name is typically something like:

DBD-mysql-1.2216.tar.gz

2. From the terminal extracted the archive using the following commands : gzip -cd

DBD-mysql-1.2216.tar.gz | tar xf –

3. This will create a subdirectory DBD-mysql-1.2216. Enter this subdirectory and

type:

perl Makefile.PL

make

make test

4. If the tests seem to look fine, the network/system administrator may continue with

make install

Configuration

The install script ``Makefile.PL'' can be configured via a lot of switches. All switches can

be used on the command line [25]. For our case we test the database using few codes from

the mesh application to connect to MySQL database. The following command can be used

on a terminal: perl Makefile.PL --testdb=<db>

A Simple Mesh Potatoes and Cron Jobs Set Up

In this simple mesh network the network/system administrator will set up a network of two

or more MP devices so that phone calls or wireless connection can be made between them,

and then connect one MP to a Local Area Network with Internet access so that a laptop can

connect wirelessly to the virtual Access Point and access the LAN and Internet [7]. To set

up an advance mesh network we can further referred to the user guides of the Mesh

Potatoes to enable better device configurations.

In addition to these, on the Mesh Potatoes we setup the cron jobs program with a scripting

program that call both static and dynamic shell program for collecting the mesh activity

logs. The cron jobs are schedulers that automate the data collection in an effective and

efficient way. Particularly, it enables the network/system administrator to execute the

script program with timing.

The following are steps to take to set up the cron jobs on the MP. Please note that the path

to the cron jobs is the same with the shell script (i.e. both static.sh and Dynamic.sh is

schedule to automate data collection for varies MP commands) programs on the MP

directory.

Installation

From the MP terminal: we configure recurring services. That is, recurring services are

handled via the /etc/crontab. The network/system administrator can add the following cron

jobs to the /etc/crontab or create a file with the jobs in

/root/etc/crontab/Dynamic_Values.sh and /root/etc/crontab/Static_Values.sh on MP

devices. The following scripts where schedule with the cron job on the MP:

1. Static_Values.sh: This script resides on MP and it will take care of the recurring

service by using MP commands that are static in values to capture data which does

not varies in values. The following is a cron job set up for the static values:

75 * * * * /usr/bin/perl /root/etc/cron/ Static_Values.sh.

This cron job keep log of the static values every 7 hours on the 5
th

 month of the

year. The network manager/system administrator can edit it to suit his data

collections requirement.

2. Dynamic_Values.sh: This script resides on MP and it will take care of the recurring

service by using MP commands that are dynamic in values to capture data which

varies in values. The following is a cron job set up for the dynamic values:

*/15 * * * * /usr/bin/perl /root/etc/cron/Dynamic_Values.sh

This cron job keep log of the static values every 15 minutes on the everyday in a

year. The network manager/system administrator can edit it to suit his data

collections requirement.

Mesh Application Setup (Server)

The network/system administrator can place the application to any path on the target

system (i.e. server machine itself) and must set all the paths within the program code. A

program path where the program itself can be executed. You can refer this to the program

source code. The following diagram shows the complete integration of the application

program into a one main program. The program can be found on my website for further

instruction on how to run the script with the device.

Figure 27: Main Integration Setup

Main Program

This program is setup to run all other programs since every other script depends on it. You

can further refer to the source code of the mesh application. See Appendix B,C,D,E,F,G

and also you can refer to the project website for the actual source code.

Mesh Activity program

This can be setup on the target system (server). See the website for further instruction

Back Up Program

Also see the website for instructions and program source code.

Mesh Application Database Setup

This was discussed earlier in this documentation. A network manager will need to setup

MySQL database server to run mesh application on the server. The network manager can

follows the subsequence instruction given within this documentation. Please refer to

internet for further assistance or helps on how to install MySQL database.

Chapter 10

FUTURE RECOMMENDATION AND PROJECT CONCLUSIONS

This chapter concluded the entire project and briefly explains the future recommendation

in very simple nutshell.

Future Recommendation

During the testing of the application, lecturers in the department of computer science (i.e.

University of the Western Cape and external tester) suggested that instead of collecting and

transferring the log files locally (i.e. manually) from the Mesh Potatoes, it is important to

automate the script application, and have it logged into the device automatically. By so

doing this, the device can exchange keys (such as public and private keys) for easy

communication and also allow remote connection to either the server or the Mesh Potatoes.

Therefore, we suggested that this fact can be a further research to this entire project.

Conclusion

In conclusion this project walked through software development life cycle, which is from

project planning to project production and delivery. We describe each phase of the project

by using agile software methodology of software development life cycle. We also carried

out the experimentation setup to arrive at this project code and documentation. Particularly,

during the testing phase we used different testing strategies to test our software

functionality as well as its performance. Furthermore, we discussed test results for various

components of the application and gave graphical and tabular representation of some of the

components. The testing phase of this project was successful as all the testing strategies

conducted were employed and successful. We also took a look into the results, and we

analysis the results. Thus, there are certain project constraints that we encountered. We

were recommended to researched and address those issues in a simplify ways and project

specific domain. An efficient ways of debugging the entire system was possibly

recommended for our future research.

Therefore, with this application the network/ system administrator can however be using

the system.

APPENDIX A

Project Plan and Timeline

The following is the project plan for the backend application.

Terms Task Descriptions

Term 1

Project Analysis

User Requirements

Document and

Requirements Analysis

Document

Understanding the problem facing Organization

e.g. UWC

Interview with Mr. Carlos Rey-Moreno to

gather the user requirements. Meeting with the

supervisor. Reading the specifications of the

Mesh Potato and SECN firmware Installation of

MySQL database, and Java database driver Still

are leaning towards MadWifi and Batman-adv

routing protocol.

Term 2

Designing and

preparing the prototype.

(Completed)

Documentation(Report) System Architecture

User interface specification, Creating Mesh

Network Setting-up Mesh Nodes, Designing

and Configuration the batman-adv routing

protocol on MP

Term 3

Implementation and

coding

Further research to re-modify Carlos Script for

project Implementation. To log real-time

network activity. Capturing Signal received

from neighbours. Working with the department

Mesh Node for easy Integration. E.g. VOIP and

Internet Usage. Re-modified Carlos Script for

project implementation to log real-time

Network Activity. SSH, SCP, Capturing, and

Storing Mesh Activity received from mesh

neighbours. Working with the department Mesh

Node for easy Integration. E.g. VOIP and

Internet Usage.

Term 4

Testing and Evaluation

Ability to test the application Remotely and

locally with the help of Network Manager (e.g.

Carlos and others). Test will be conduct

through test bed.

Qualitative evaluating Method of testing the

App. That is, method of testing with some

calculations and graphs representation.

Setting up a life demo to demonstrate the

application for real time network monitoring.

Aim at testing with department mesh nodes.

Application testing using the different methods

of software engineering testing strategies.

Analysis of the result will be gathered and

explained.

Presentation of the testing results and giving the

feedback of the network manager

Preparation of Report Document and

Application User Guides

APPENDIX B

Perl Program: ETL activity program for the Mesh Potatoes

This section shows the Perl program using the concept of Extraction, Transformation, and

Loading methods to get data into the MySQL database. A technique we used to arrive at

the final project implementation. The source code is on my project website and you can

download or view it. The following link we lead you to the website:

http://www.cs.uwc.ac.za/~oajayi/Downloads/Loading.pl

http://www.cs.uwc.ac.za/~oajayi/Downloads/Loading.pl

APPENDIX C

Mesh Potatoes: A shell program on MP for collecting a varies value collection

This section shows a dynamic shell program for capturing network activity and also helps

to store the log file in Mesh Potatoes root directory.

#!/bin/bash

writeToResultFile() {

 touch log_`hostname`_$(date +%m%d%y).log

 ping 10.130.1.20 -c 20 >> /root/log_`hostname`_$(date +%m%d%y).log

 ping 10.130.1.21 -c 20 >> /root/log_`hostname`_$(date +%m%d%y).log

 batctl o >> /root/log_`hostname`_$(date +%m%d%y).log

 wlanconfig ath0 list >> /root/log_`hostname`_$(date +%m%d%y).log

 uptime >> /root/log_`hostname`_$(date +%m%d%y).log

 athstats >> /root/log_`hostname`_$(date +%m%d%y).log

 athstats >> /root/log_`hostname`_$(date +%m%d%y).log

 cat /proc/net/madwifi/ath0/rate_info >> /root/log_`hostname`_$(date +%m%d%y).log

 msg=" $*"

 echo "messaage: $msg"

 echo $msg >> log_`hostname`_$(date +%m%d%y).log

}

doProcess()

{

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

}

doProcess

APPENDIX D

Mesh Potatoes: A shell program on MP for collecting static data log

The following program shows a static shell program for capturing network activity and

also helps to store the log file in Mesh Potatoes root directory.

#!/bin/bash

writeToResultFile() {

 touch log_`hostname`_$(date +%m%d%y).log

 batctl vm >> /root/log_`hostname`_$(date +%m%d%y).log

 batctl it >> /root/log_`hostname`_$(date +%m%d%y).log

 sysctl -a >> /root/log_`hostname`_$(date +%m%d%y).log

 iwconfig >> /root/log_`hostname`_$(date +%m%d%y).log

 ifconfig >> /root/log_`hostname`_$(date +%m%d%y).log

 cat /etc/bat-hosts >> /root/log_`hostname`_$(date +%m%d%y).log

 cat /etc/config/wireless >> /root/log_`hostname`_$(date +%m%d%y).log

 msg=" $*"

 echo "messaage: $msg"

 echo $msg >> log_`hostname`_$(date +%m%d%y).log

}

doProcess()

{

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

 writeToResultFile "ifconfig >> log_`hostname`_$(date +%m%d%y).log"

}

doProcess

APPENDIX E

Cron Jobs setup for both Static and Dynamic data collection

This section shows a cron scheduler for timing when to capture the network activity using

the dynamic program and static program.

Dynamic Cron Job

75 * * * * /usr/bin/perl

/home/boraton2003/Desktop/Project/programs/fileOpen/scheduler/Dynamic_Values.sh

Static Cron Job

*/15 * * * * /usr/bin/perl

/home/boraton2003/Desktop/Project/programs/fileOpen/scheduler/Dynamic_Values.sh

APPENDIX F

A program for getting data collection out of Mesh Potatoes

This section of the appendix shows a Perl program for reducing the large log file kept in

the Mesh Potatoes to a minimum log file. The following show how we implement the

program. Please refer to link below for source code

http://www.cs.uwc.ac.za/~oajayi/Downloads/MeshActivity.pl

http://www.cs.uwc.ac.za/~oajayi/Downloads/MeshActivity.pl

APPENDIX G

Performance Testing Program

#!/usr/bin/perl -w

use strict;

use warnings;

undef $/;

my $output = "time.text";

Using the open() function to open the log output.

Remove the newline from the log outputname

chomp $output;

unless(open (OUTPUT, $output)){

Die with error message

if we can't open it.

die "\nUnable to find the $output and fail for some reason: $!\n";exit;

 }

my $Num = 10;

print "\n";

print "\n";

print ">>>>>>>>>>>>> PERFORMANCE TESTING RESULTS

<<<<<<<<<<<<<<<<<\n";

print "\n";

my $data='';

sub getSysTime {

 my $sysTime = shift; my $sumSys; my$aveSys;

 if ($sysTime =~ m/System time \(seconds\):\s+(\d+\.\d+)/s){

$data = $1;

my @sys = $sysTime =~ m/System time \(seconds\):\s+(\d+\.\d+)/gs;

my $arraysize = @sys;# Array size

foreach (@sys){

$sumSys+=$_;

$aveSys = $sumSys/$arraysize ;

print "Cumulative sum for the System time (seconds) is = $sumSys secs.\n";

print "Average per instructions for the System time (seconds) is = $aveSys sec.\n";

print "\n";

return @sys;}

else{

print "Not possible\n";}

}

sub getUserTime {

 my $Usertime = shift; my $sumUser; my $aveUser;

 if ($Usertime =~ m/User time \(seconds\):\s+(\d+\.\d+)/s){

$data = $1;

my @User = $Usertime =~ m/User time \(seconds\):\s+(\d+\.\d+)/gs;

#print "XXXXXUser>>>@User<<<XXXX\n";

my $arraysize = @User;

foreach (@User){

$sumUser+=$_;

$aveUser = $sumUser/$arraysize ;=

print "Cummulative sum for the User time (sceconds) is = $sumUser secs.\n";

print "Average per instructions for the User time (seconds) is = $aveUser sec.\n";

print "\n";

return @User;

}

else{

print "Not possible\n";}

}

sub getMax_Size {

 my $Max_Size = shift; my $sumMax; my $aveMax;

 if ($Max_Size =~ m/Maximum resident set size \(kbytes\):\s+(\d+)/s){

$data = $1;

my @Max = $Max_Size =~ m/Maximum resident set size \(kbytes\):\s+(\d+)/gs;

my $arraysize = @Max;

foreach (@Max){

$sumMax+=$_;

$aveMax = $sumMax/$arraysize ;

}

print "Total Maximum Paging Size for the User Application = $sumMax (bytes)\n";

print "Average per size is = $aveMax bytes\n";

print "\n";

return @Max;

}

else{

print "Not possible\n";}

}

sub getPercent {

 my $Percent = shift; my $sumPerc; my $avePerc;

 if ($Percent =~ m/Percent of CPU this job got:\s+(\d+%)\s/s){

$data = $1;

my @Per = $Percent =~ m/Percent of CPU this job got:\s+(\d+%)\s/gs;

my $arraysize = @Per;

my $l;my $CPI;

foreach $l (@Per){

$l =~ s/\%//g;

$sumPerc+=$l;

$CPI = ($sumPerc * $Num);

$avePerc = $CPI/$arraysize;

}

print "Total Maximum CPU clock cycles in seconds is = $sumPerc secs.\n";

print "Maximum Average CPU is = $CPI clock cycles per sec. \n";

print "Average Execution Time = Average clock cycles per instructions is = $avePerc

Sec.\n";

print "\n";

return @Per;

}

else{

print "Not possible\n";}

}

while(my $output1 = <OUTPUT>){&getSysTime($output1 &getUserTime($output1);

&getPercent($output1);

&getMax_Size($output1);

}

close OUTPUT;

APPENDIX H

Back up Program for Database Recovery

This program will enable the network/ system administrator to recover database if peradventure

the mesh application failed.

We use this Perl Script to Backups the Mesh Application databases Which was specified

in the dbbackup.config file

#!/usr/bin/perl

use File::Basename;

We write the names of specified database into config file

This program uses a comment to bypass any database that we don't want to backup

That is, # Unwanted_DB (i.e. commented: will not be backed up)

We set the directory to keep the backup files

We make sure that the directory exists

$backup_folder = '/home/boraton2010/Desktop/programs/fileOpen/NEW'; #EDIT THIS LINE

the config file is a text file with a list of the databases to backup

this should be in the same location as this script, but you can modify this

if you want to put the file somewhere else

my $config_file = dirname($0) . "/dbbackup.config";

retrieve a list of the databases from the config file

my @databases = removeComments(getFileContents($config_file));

change to the directory of the backup files.

chdir($backup_folder) or die("Cannot go to folder '$backup_folder'");

grab the local time variables

my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time);

$year += 1900;

$mon++;

#Zero padding

$mday = '0'.$mday if ($mday<10);

$mon = '0'.$mon if ($mon<10);

create the name of the backup folder that will contain all of the backup files

my $folder = "$year-$mon-$mday";

mkdir($folder) or die("Cannot create a folder called '$folder'");

backup each database contained in the @databases array

foreach my $database (@databases) {

 next if ($database eq '');

 chomp($database);

 my $table = '';

 if(index($database,' ')+1) { #Get just 1 table in the database - if there is a ' '(space) in the db name

 my @parts = split(' ',$database);

 $database = $parts[0];

 $table = $parts[1];

 }

you may comment out this print statement if you don't want to see this information

print "Backing up $database ... ";

 my $file = $database;

 $file .= '_' . $table if($table ne '');

 $file .= ".sql";

perform a mysqldump on each database

change the path of mysqldump to match your system's location

make sure that you change the root password to match the correct password

 `mysqldump -u mesh -p $database $table > $folder/$file`;

 print "Done\n";

}

print "Compressing the folder ... ";

`tar -czf $folder.tar.gz $folder/`;

print "Done\nRemoving Folder ... ";

`rm -rf $folder`;

print "Done\n\n";

this subroutine simply creates an array of the list of the databases

sub getFileContents {

 my $file = shift;

 open (FILE,$file) || die("Can't open '$file': $!");

 my @lines=<FILE>;

 close(FILE);

 return @lines;

}

remove any commented tables from the @lines array

sub removeComments {

 my @lines = @_;

 @cleaned = grep(!/^\s*#/, @lines); #Remove Comments

 @cleaned = grep(!/^\s*$/, @cleaned); #Remove Empty lines

return @cleaned;

}

APPENDIX I

Aging Script

This scripting will assist the network/system administrator to age the data logged on the Mesh

Potatoes after collecting relevant information from the generated log file on the Mesh Potatoes.

#!/usr/local/bin/perl

use strict;

my $TODAY = time;

my $DIR = '.';

#my $LOGFILE = "/var/spool/uv/test/fileout";

my $wktime = 604800; (ie 86400*7)

sub write_to_file{

 open (LOGFILE, ">/var/spool/uv/test/fileout");

 opendir DIR, $DIR or die "could not open directory: $!";

 while (my $file = readdir DIR)

 { next if -d "$DIR/$file";

 my $mtime = (stat "$DIR/$file")[9];

 if ($TODAY - $wktime > $mtime) {

 print LOGFILE "$DIR/$file is older than 7 days...removing\n";

 }

 }

}close LOGFILE; close DIR;

sub remove_old_files{

 opendir DIR, $DIR or die "could not open directory: $!";

 while (my $file = readdir DIR){

 next if -d "$DIR/$file";

 my $mtime = (stat "$DIR/$file")[9];

 if ($TODAY - $wktime > $mtime){

 unlink $file;}

 }

}close LOGFILE; close DIR;

Main:{

 write_to_file();

 remove_old_files();}

REFERENCES

[1] Aichele, C., Wunderlich, S., Lindner, M., and Neumann, A. Better Approach to Mobile

Ad-hoc Networking (B.A.T.M.A.N.) draft-wunder lich-openmesh-manet-routing-00. 2008.

[2] Self-study: Broadening the concept of b.a.t.m.a.n-adv routing protocols. (2006).

Retrieved March 03, 2013, from open mesh website: http://www.open-

mesh.org/projects/batman-adv/wiki

[3] Crow, B.P., Indra, W., Sakai, P.T., and Jeong Geun, K. IEEE 802.11 Wireless Local

Area Network. IEEE Communications Magazine, September (1997), 116-126

[4] Marlo, J. (2006). GPRS remote access and data collection for rural telehealth project (

Honours thesis, University of the Western Cape). Retrieved from

http://www.uwc.ac.za/~mjooste

[5] M.E.M. Campista, P.M. Esposito, I.M. Moraes, L.H.M. Costa, O.C.M. Duarte, D.G.

Passos, C.V.N. de Albuquerque, D.C.M. Saade, and M.G. Rubinstein, “Routing Metrics

and Protocols for Wireless Mesh Networks,” IEEE Network, vol. 22, Jan. 2008, pp. 6-12.

[6] Self-study: Understand Mesh Potato devices and firmware. (2007). March 01, 2013,

Retrieved from the Village telco website: http://villagetelco.org/mesh-potato/

[7] Self-Study: Rendered the concept of a backend and frontend of a system. (2013).

Retrieved March 25, 2013. How to set up mesh network for backend system:

www.shutterstock.com

[8] Shepherd M. N. (2011). An overview of Wireless Mesh Network Protocols and Voice

over IP considerations (Honours thesis, Unversity of Cape Town). Retrieved from

http:www.uct.ac.za

[9] Self-study: ReMesh, Mesh Network Workgroup. May 12, 2013. Retrieved

from http://mesh.ic.uff.br.

[10] J. Duarte, D. Passos, R. Valle, L. Magalhães, D. Saade, C. Albuquerque. Management

Issues on Wireless Mesh Networks, Latin-American Operation and Network Management

Symposium – LANOMS 2007, Petrópolis, RJ, Brazil. September 2007.

[11] R. De T. Valle, D. Passos, C. Albuquerque2, D. C. Muchaluat. Mesh Topology Viewer

(MTV): an SVG Based Interactive Mesh Network Topology Visualization Tool. To be

published in IEEE Network Magazine, 2007.

[12] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati. A principled

approach to data integration and reconciliation in data warehousing. In Proc. Intl.

Workshop on Design and Management of Data Warehouses (DMDW’99), Heidelberg,

Germany, (1999).

 [13] H. Galhardas, D. Florescu, D. Shasha and E. Simon. Ajax: An Extensible Data

Cleaning Tool. In Proc. ACM SIGMOD Intl. Conf. On the Management of Data, pp. 590,

Dallas, Texas, (2000).

[14] M. Golfarelli, D. Maio, S. Rizzi. The Dimensional Fact Model: a Conceptual Model

for Data Warehouses. Invited Paper, International Journal of Cooperative Information

Systems, vol. 7, n. 2&3, 1998.

[15] M. Golfarelli, S. Rizzi: Methodological Framework for Data Warehouse Design. In

ACM First International Workshop on Data Warehousing and OLAP (DOLAP ’98), pp. 3-

9, November 1998, Bethesda, Maryland, USA.

[16] R. Kimbal, L. Reeves, M. Ross, W. Thornthwaite. The Data Warehouse Lifecycle

Toolkit: Expert Methods for Designing, Developing, and Deploying Data Warehouses.

John Wiley & Sons, February 1998.

[17] Self-study: Syntax (programming languages), August 23, 2013. Retrieved from

Wikipedia website http://en.wikipedia.org/wiki/Syntax_ (programming_languages)

[18] Badonnel, R., State, R. and Festor, O. (2005), Management of mobile ad hoc

networks: information model and probe-based architecture. Int. J. Network

Mgmt.15: 335–347. doi: 10.1002/nem.577

[19] Batin, C., Seri, S., and Navate, S.B, (1994) Conceptual Database Design: An Entity

Relational Approach, Redwood City, California

[20] Roger S. Pressman, Software Engineering: A Practitioner’s Approach, Sixth Edition,

McGraw-Hill Internation Edition 2005, pp 387-647.

[21] Self Study: http://mgarner.wordpress.com/2006/09/27/automated-testing-for-

datamarts/, Accessed September 12
th

, 2013.

[22] Self Study: http://cpansearch.perl.org/src/JWIED/DBD-mysql-2.1028/INSTALL.html,

Accessed September 12
th

, 2013.

[23] Self Study: https://help.ubuntu.com/community/phpMyAdmin, Accessed September

12
th

, 2013.

[24] Self Study: http://www.cpan.org/modules/by-module/DBD/, Accessed September

12
th

, 2013.

[25] Self Study: http://cpansearch.perl.org/src/JWIED/DBD-mysql-2.1028/INSTALL.html,

Accessed September 12
th

, 2013.

