
Project Supervisor:

Prof Bill Tucker

Project Co-Supervisor:

Mr. MJ. Norman

Project Advisor:

Mr. Carlos Rey-Moreno
Mr A. Kruger

BACK-END APPLICATION FOR MONITORING

MESH NETWORK

By

Ajayi Olabode O.

Project Goals:

 To reduce high rate of data log on Mesh Potatoes

per day, weekly, or even monthly and keep the

CPU utilization consumed to a minimum

 To provide monitoring and information that can

be used to either predict future failures or to

diagnose network problems (e.g. Mankosi

Community in the Eastern Cape for rural mesh

networks)

INTRODUCTION

What Is Expected From The Software Solution?

To manage and monitor mesh network activity

in an effective way

To help the network manager to save time

expended on data collection

REQUIREMENTS

What Is Not Expected From This Software?

Not to override existing system functionality

Should not disrupt the network activity

PROPOSED SOLUTIONS

The requirements employed the

Concept of data mining using Extracting,

Transforming, and Loading (ETL) for this project

database management system.

Use of Small Campus Enterprise Network firmware

Easy data communication and better quality of

service (wireless links).

Main Program

Mesh Activity
Program

Time Program
Activity

Extraction
Program

Data Parse Into
Database

Log file
Collection And

Reduction

HIGH LEVEL VIEW OF THE SYSTEM

Source System

Shell Scripting Split:

 Dynamic

 Static

EXTRACTION

Using Mesh Activity

to reduce main log to

minimum temp log

TRANSFORM

TEMP LOG

Using transform

Perl program

LOADING

DATA

Target System

Loading data into

MySQL DB

Front-end Application

Mapping

Staging Process

DESIGN & IMPLEMENTATION

 Performance testing (of script)

Unit testing

 Security testing (on the database)

 Recovery testing

TESTING STRATEGIES

We conducted performance testing to track resources

over time and know exactly what we are getting at. We

further:

 Compare the application timing to the OS timing.

 Test the performance and speed by finding the

performance for our application on a particular

machine.

PERFORMANCE TESTING

Elapsed Time

(Real time)

CPU time for

this program

Memory

Usage

User (Direct)
System

(Time In OS)

Execution Time

A SNAPSHOT OF PERFORMANCE TESTING

Execution time can be divided into two parts.

 User time is spent running the application program itself.

 System time is when the application calls operating system

PERFORMANCE TESTING (COMPARISON)

0

2

4

6

8

2 4 6

N
o

s.
 o

f
In

st
ru

ct
io

n

Execution time (Seconds)

Execution Components Chart

CPU

System

User

Notes:

Cumulative Sum (System time) = 0.51 sec

Average per Instructions = 0.0085 sec

Cumulative Sum (User time) = 4.5 sec

Average per Instructions = 0.75 sec

Execution time = CPI * cycle time * Nos of Instruction

Note:

CPI = CPU per Instructions

PERFORMANCE TESTING (COMPARISON)

0

10

20

30

100 200 500

E
xe

cu
ti

o
n

 t
im

e

Memory per cycle

Comparing Memory to CPU usage

Chart

CPU

Paging Size

Total Maximum of CPU time = 5570 clock cycles

CPU Average per Instructions = 557 sec

Average Execution Time = 92.83 sec

Maximum Paging Size Usage = 332772 (bytes)

Average per size = 5546.2 bytes

CPU Usage = (User + System)/ Total Nos. of Instr.

We conducted unit testing on the internal processing logic of the

program. The following are highlighted:

 Functions : We ensure information flow properly into and out

of the program unit under test.

 All program including errors handling paths are checked and

tested.

UNIT TESTING

Unit Testing View

Function
checked

We conducted security testing to protect against

vulnerabilities. We implemented two out security

elements. The two included are:

 Authentication : Credential verification between

clients and servers

 Authorization : By supplying user ID and password

SECURITY TESTING

Security Testing View

We conducted recovery testing by creating a backup of

the entire database. This is done automatic using a cron

job for effective correctness and better system

optimization.

RECOVERY TESTING

Backup Code View

Our testing strategy reviewed some issues which is most

applicable to any network scripting application. These include:

Mesh Potatoes software versions

 Precision inaccuracy

Mixed mode operation

 Incorrect arithmetic precedence and initialization

TESTING ISSUES AND RESULTS

REFERENCES

[1.] S. Surana, R. Patra, and E. Brewer, Simplifying Faulty Diagnosis in

 locally Managed Rural WiFi Networks, University of California,

 Beckery, USA.

[2.] L. Subramanian, S. Surana, R. Patra, M. Ho, A. Sheth, and E. Brewer.

 Rethinking Wirelesss for the Developing World. Hotnets-V, 2006.

[3.] K. Chebrolu, B. Raman, and S. Sen. Long-Distance 802.11b Links:

 Performance Measurements and Experience. In ACM MOBICOM, 2006.

The following outlines I will be demonstrating:

 Live Crontab job demonstration on Mesh Potatoes: Collection of log file on

Mesh Potatoes

 SCP to perform Extracting, Transforming and loading into database (An

Integrated Program and testing the performance with timing)

 Backing up the system for data recovery

 Aging the log file from the Mesh Potatoes

DEMO

QUESTIONS AND ANSWERS

