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Abstract

Customer service is a large revenue stream for some companies, and ensuring

that they provide the best quality service is likely to be their main prior-

ity. Not all customers readily express their emotions, verbally, regarding the

quality of the service they are provided. Mehrabian 1980, states that 55% of

communication is facial expression. The motivation for this project is to apply

an Automatic Human Emotion Detection (AHED) system in cases where an

employee interacts with a customer. The AHED system focuses on emotion

recognition using facial expressions. The proposed method for this project,

first captures an image from the camera, the image is processed using the

Viola Jones Algorithm to detect the face and the Histogram of Oriented Gra-

dients (HOG) to extract the features from the face. Lastly the AHED system

is trained using Support Vector Machines (SVM), to classify each emotion.

There are six universal human expressions described by Ekman and Friesen,

namely Surprise, Fear, Disgust, Anger, Happiness and Sadness. Grayscale

frontal images will be used as input for the AHED system.
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Chapter 1

Introduction

Communication plays a large role, in daily human interaction. It can take

the form of verbal or non-verbal communication, Mehrabian found that over

93% of verbal communication is conveyed through ones tone of voice, 38%,

and non-verbal ques, 55% [6]. Understanding non-verbal communication is

a valuable skill, in that it is a universal form of communication. Non-verbal

communication is a combination of body language, physical gestures and facial

expressions. Ekman & Friesen found six facial expressions that are universally

identifiable in recognizing Fear, Anger, Disgust, Surprise, Happiness and Sad-

ness [7]. A facial expression is made up of the changes in facial muscles mainly

the mouth, eyes and eyebrows. These changes help to reflect ones current state

of mind.

The rest of this chapter is organised as follows: Section 1.1 describes the prob-

lem statement; Section 1.2 provides the overview of the solution proposed in

this project and Section 1.3 outlines the method of implementing the proposed

solution.

1.1 Problem Statement

Companies use feedback from their customers as a metric to measure their

customer satisfaction rate. Customer feedback can be initiated by the cus-

tomer as a compliment or criticism, based on the service they were given.

Alternatively, a company can offer their customers optional online or physical

surveys to be completed. The problem is that customers are more likely to

refrain from commenting on a service, unless provoked to do so. Customer

service is a large revenue stream for companies whose core business is based

around the customer. Ensuring that the customer stays happy is key, for their

success.

1
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1.2 Proposed Solution

An Automatic Human Emotion Detection system can be applied in any envi-

ronment that benefits from understanding facial expressions and human emo-

tion. The proposed solution combines customer satisfaction with an auto-

mated system. This is done by using face detection to find the customers face

in an image and facial feature extraction to identify the dominant customer

emotion features in that image. To get the best results possible the training

and classification of the system will be done using a machine learning tech-

nique. Companies can later incorporate the results of the system in improving

their customer service, ensuring that their customers stay satisfied.

1.3 Proposed Method

A grayscale frontal image of the customer is used as input for the system.

The Viola Jones Algorithm is then used to detect the location of the face in

the image and the Histogram of Oriented Gradients is used to extract the

features. Lastly the AHED system is trained using Support Vector Machines,

to classify each emotion.



Chapter 2

Related Work

There are a wide variety of methods that are used in the field of emotion

recognition using facial expressions. However, a large number of those meth-

ods are implemented using a similar process. Shown in Figure 2.1, initially

the image is captured and processed. Thereafter the face is detected and fea-

tures are extracted. Then a machine learning technique is trained to do the

classification of the emotions. The related work looks at all four stages in the

Figure 2.1: The four stages for facial expression recognition

implementation process and different methods used by other researchers. The

rest of this chapter is organised as follows: Section 2.1 describes the process

of obtaining the image from the camera and image processing; Section 2.2

explains how face detection functions; Section 2.3 explains the feature extrac-

tion process; Section 2.4 the training of the machine learning technique and

Section 2.5 outlines the results achieved by other researchers.

2.1 Capture Image from the Camera and Image Pro-

cessing

An image is taken from the camera and image processing tools are used to

help normalize and standardize the input image.

• Goyal and Mittal, achieved the desired resolution and colour for their

images by adjusting the brightness and contrast of the image [8].

3
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• Reddy and Srinivas, scaled and cropped their images to 150× 120, and

ensured that the location of the eyes stayed the same in each image. The

image was processed further, using an average combination of all the

input image histograms. This process is called histogram equalization,

see Figure 2.2, and helps in decreasing variation in an image. Histogram

equalization is a technique for stretching out the intensity range of an

image to enhance the contrast of the image [9].

Figure 2.2: Histogram Equalization

• Boubenna and Lee, scaled their images to 100× 100 pixels [10].

2.2 Face Detection - Finding the Face

Finding the location of the face helps identify the region that contains all the

features required to continue with facial expression recognition. The rest of

the image is not important for this purpose.

• See Figure 2.3, Reddy and Srinivas applied a fixed oval shaped mask

over the image to extract the face region [9]. The images they used only

contained faces, making it easier to apply the masks.

• Boubenna and Lee used the Viola and Jones algorithm to detect the lo-

cation of the face in an image [2]. This algorithm uses Haar-like features
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Figure 2.3: Preprocessed Image with Oval Masks

to help find the facial features, such as the eyes, nose and mouth. The

Ada Boost algorithm is used to reduce the number of features, if there

are too many. They used the canny edge detection operator to detect

the edges of the face [10].

2.3 Feature Extraction - Extract the Features from the

Face

Once the face has been detected, it is important to identify which features

will be used for feature extraction. Either the full-face, or individual features

from the face can be used as part of the feature set. These individual features

can be the eyes, nose, mouth and eyebrows. The feature extraction algorithm

can be applied based on its compatibility with the features chosen.

• Goyal and Mittal extracted the nose, mouth and eyes using the Viola

and Jones Haar classifier [8].

• Reddy and Srinivas considered the entire face for the feature extraction

not just the eyes, mouth and nose individually . First, they used Gabor

filters to generate a bank of filters at 5 spatially varying frequencies and

8 orientations. The filtered outputs were then concatenated. Principle

Component Analysis (PCA) was used to reduce dimensionality. PCA

is a statistical technique that reduces the dimensions of feature vec-

tors. The high dimensionality of feature vectors can cause over-fitting

during classification. The PCA algorithm generates the eigenfaces for

each image of dimension N ×N . From this their system generated the

eigenvector of dimension 2N for each image. The vectors that relay the

distribution of the face images the best are selected. These vectors are

used to define the subspace, i.e., the “face space”, of the face images [9].
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The face image subspace represents a lower dimensional space 2N of the

original image with dimensions N ×N .

• Boubenna and Lee used Pyramid Histogram of Oriented Gradients (PHOG)

to extract features. PHOG represents an image by its local shape and

the spatial layout. The local shape of an image is represented by a

histogram of edge orientations within an image sub-region, which are

divided into K bins. The spatial layout is represented by tiling the im-

age into regions at different levels. Each image is divided into a sequence

of increasingly finer spatial grids by repeatedly doubling the number of

divisions in each axis direction [11]. The parameters of PHOG were set

as follows: 3 for number of levels, 360 degrees for the number of dimen-

sions and 16 for the number of bins. To decrease the number of features,

a Genetic Algorithm (GA) was used, which resembles natural selection

to find optimal features [10].

2.4 Training the machine learning technique

The training of the machine learning technique based on supervised learning

whereby the machine learning technique is given labelled images, Happy, Sad,

Anger, Disgust, Surprise, Fear and Neutral, and is required to learn them.

Once the machine learning technique has completed its training, it can then

be fed unlabelled images, and the result would be a prediction of which label

best suits the given image.

• Goyal and Mittal used an Artificial Neural Network, with one hidden

layer. The neural network architecture has three layers: input, hidden

and output layers. Figure 2.4 provides a visual layout of the architecture

of an individual neuron and a ANN with multiple layers. Feed-forward

ANNs allows the signal to travel in one direction from the input layer

to the output layer. Recurrent networks contain feedback connections,

where the signal moves in both directions. To get accurate results from

the ANN, the weights can be set explicitly using prior knowledge, or the

ANN can be trained to help find the optimal weights [8, 12].

• Reddy and Srinivas, used an Artificial Neural Network, with two hidden

layers [9].
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Figure 2.4: Architecture of an artificial neuron and a multilayered neural
network

• Boubenna and Lee, used Linear Discriminants Analysis (LDA) and K

Nearest Neighbours (KNN). LDA finds the maximum distances within

classes, to obtain maximum class separation. LDA only uses up to sec-

ond order moments, such as the covariance and mean, of the class dis-

tribution. KNN classifies unlabelled samples according to the training

samples. KNN finds the nearest K in the labelled samples and set them

to the closest group, for the unlabelled samples. One distance measure

is required, and [10] used the cosine distance measure.

2.5 Results

The results from the three studies are as follows, with [10] having the best

overall results for their facial expression recognition system.

• Goyal and Mittal achieved an 80% classification accuracy, using a con-

fusion matrix and a regression plot to verify the results [8].

• Reddy and Srinivas achieved an 85.7% classification accuracy using the

JAFFE database [9].

• Boubenna and Lee achieved a 99.33% accuracy, using the Radboud Faces

Database (RaFD) [10].



Chapter 3

Image Processing Techniques

3.1 Introduction

This chapter looks at image processing techniques used in obtaining the fea-

tures needed to do the final classification. The Viola and Jones algorithm,

developed by Viola and Jones, is used to detect the location of the frontal

face in the image. Once we have this location we then extract the face, which

represents our region of interest. The region of interest is then Gray-scaled

and is now ready for feature extraction. The Histogram of Oriented Gradients

is used for the feature extraction process.

The rest of this chapter is organised as follows: Section 3.2 provides details

on Viola-Jones Object Detection and it’s key concepts; Section 3.3 covers the

image preprocessing techniques used and Section 3.4 explains how Histogram

of Oriented Gradients are used for feature extraction. The code implementa-

tion for the Viola-Jones face detection and the HOG feature extraction can

be found in Appendix B, Section B.1.1.

3.2 Viola-Jones Object Detection

The Viola-Jones algorithm [2] is an object detection method that uses

Haar-like features. For this project the Viola-Jones object detection is used

to find the location of frontal faces in images. The algorithm uses three

concepts to effectively detect objects with certain features:

The first concept is the integral image, which allows for the features in the

image to be evaluated much faster. This is also known as an intermediate

view of the image. At each point (x, y) in the integral image, there is the

sum of the pixels above and to the left of the point (x, y),inclusive.

Referring to Figure 3.1: In order to calculate the sum of the pixels within

the rectangle D, only four original image references are needed.

8
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• At point 1 in the integral image, the sum of all the pixels in rectangle

A in the original image are used.

• At point 2 in the integral image the sum of all the pixels in rectangles

A and B in the original image are added together (A+B).

• At point 3 in the integral image the sum of all the pixels in rectangles

A and C in the original image are added together (A+ C).

• Lastly, at point 4 in the integral image of all the rectangles are added

together (A+B + C +D) in the original image.

Thus, to get the sum of the pixels in rectangle D will result in 4 + 1− (2 + 3).

Figure 3.1: Integral Image [2]

The second concept in the Viola-Jones framework [2] is a classifier based on

reducing a large feature set down to a smaller set of important features. This

is done by using Ada-Boost. Ada-Boost finds a weak classifier and forces it to

depend on a single feature, resulting in a stronger classifier. A weak classifier

is selected at each stage of the boosting process, or feature selection process.

The third concept is a method that combines weak classifiers in a rejection

cascade. This increases the speed of detection as the focus is now on

promising areas of the image. Each stage in the cascade is formed using

Ada-Boost. The Viola-Jones algorithm uses many Haar-like features. I will

describe Three of these Haar-like features.

• Two-rectangle feature – is calculated by subtracting the sum of the

pixels of one rectangle from the sum of the other. The rectangles need

to be the same size, shape and need to be vertically or horizontally

adjacent.
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• Three-rectangle feature – is calculated by subtracting the sum of the

two outside rectangles from the middle rectangle.

• Four-rectangle feature – is calculated by subtracting the sum of the

pixels of one diagonal pair from the other.

Figure 3.2: Haar-like features [2]

3.3 Image Preprocessing

3.3.1 Resizing

The image is resized once we obtain our region of interest using Viola-Jones

to detect the location of the face. The main benefit of resizing the image is to

maintain uniformity in our feature set. Another benefit is that it scales down

the number of pixels in a image, resulting in a smaller feature set [13].

3.3.2 Gray Scaling

Converting an image from RGB, colour, to Grayscale helps in reducing the

number of colour channels down to a single color channel. A commonly used

method is the standard NTSC conversion formula, that calculates the lumi-

nance of a pixel [13]:

Luminance of a pixel = (0.2989×red)+(0.5870×green)+(0.1140×blue)

3.4 Histogram of Oriented Gradients

The Histogram of Oriented Gradients is a feature extraction method for im-

ages. Where a image is divided into cells, of Cx × Cy pixels, that form a grid

over the image. Histograms are calculated for each of these cells based on
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the orientation of the gradients of the pixels in the cell. This is followed by

the image further being divided into a grid, of Bx×By cells, which are called

blocks. Each block is used to contrast-normalize the histograms (cells) present

in the block. The dimensions of the final feature vector calculated by:

total number of blocks×number of cells in each block×number of orientation bins

Further details of the Histogram of Oriented Gradients will be discussed

following Dalal & Triggs HOG feature extraction chain,see Figure 3.3,

excluding the linear SVM and classification [3].

Figure 3.3: HOG feature extraction chain [3]

3.4.1 Input Image

Given an image, first identify the region of interest in the image. This region

then forms your image window.

Figure 3.4: Region of interest
Figure 3.5: Image window

3.4.2 Normalize Gamma & Colour

Normalizing the image window is an optional addition to the HOG. Dalal &

Triggs found that normalizing the image pixels (p) at this the stage did not

have a noticeable impact on the performance at the detection stage of their

research. However when choosing to normalize the image window Gamma

(power law) normalization had a negative impact on the results, while Square-

root normalization had more of a positive impact on the results.

Gamma Normalization: log(p)

Square-root Normalization:
√
p
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3.4.3 Gradients

The gradient for the image window is computed by applying a one dimensional

mask in both X (Gx) and Y (Gy) directions.

Figure 3.6: One dimensional masks, (a) X-direction and (b) Y-direction

The mask convolves over the image window. At each point where the mask

is placed the pixels are multiplied by the mask. After that the two outer

pixels are added together and the result is placed in the position of the

center pixel. The mask is not able to compute the gradients on the pixels

around the edge of the image. Unless extra pixels are added to the edges of

the image before hand. The example below shows how the loss in pixels

affects the resulting gradient image.

3.4.3.1 Example:

Figure 3.7: Image window

Figure 3.8: The result of a one dimensional mask applied in the X-direction
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Figure 3.9: The result of a one dimensional mask applied in the Y-direction

Now that we have the gradients, we can compute the magnitude and orienta-

tion of the gradients from Gx & Gy.

Magnitude: G =
√
Gx +Gy

Orientation: θ = arctan(
Gy

Gx

)

3.4.4 Weighted Vote in Spatial & Oriented Cells

We can now decide on the dimensions of each cell, before calculating the

HOGs. In their research Dalal & Triggs found that the size of the cell are

dependent on the size of the features you need to extract, e.g eyes, nose,

mouth.

Figure 3.10: 16× 16 pixel image
Figure 3.11: Image divided into 4 × 4
pixel cells

The next parameter is the number of orientation bins. The orientation

of the gradient can be described as the angle of the gradient. There are two

options available when choosing the range of the gradient angle:

• Signed [0◦, 360◦]

• Unsigned [0◦, 180◦]

Unsigned gradients in the range [0◦, 180◦], with the number of orientation bins

in the range [9, 12] are the preferred values for the orientation bins.
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Figure 3.12: θ as an angle Figure 3.13: Unsigned gradients with 9
orientation bins

Looking at a single cell. Each pixel of the gradient magnitude image

contributes to a orientation bin of a cells histogram. The value of the same

pixel in the gradient orientation image helps you identify which orientation

bin to place the gradient magnitude of the pixel.

3.4.5 Contrast Normalize over Overlapping spatial cells

Contrast normalization is used to ensure that the cells are not affected vastly

by changes illumination and contrast in the image. Starting with dividing the

image into blocks that can fit at least 2-3 features, these blocks are allowed

to overlap one another for more detailed feature set. Contrast normalization

works by taking the sum of the histograms in a block Sb and dividing each

of the histograms Hhist by
√
S2
b + ε2. The result is a normalized histogram

Hnorm in each cell.

Contrast normalization : Hnorm =
Hhist√
S2
b + ε2

Figure 3.14: Blocks of Bx ×By cells
Figure 3.15: Block A & B with a 50%
overlap

Figure 3.16: Cell histograms for contrast normalization in a block
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3.4.6 Collect HOGs over Detection Window

The final step is to concatenate all the normalized histograms to form a one

dimensional feature vector [Hnorm, Hnorm, Hnorm...]. This feature vector is then

used for the classification and training of the system.



Chapter 4

Implementation

4.1 Introduction

This chapter looks at the high-level and low-level views of the system and code

documentation. The high-level view in Section 4.2 provides an outline of the

processes followed during the implementation of the system, while the low-level

view in Section 4.3 provides a more detailed description of the implementation

of the system.

4.2 High-Level View of the System

The high-level view of the system provides an overview of all the stages that

the system follows when classifying an image given as input. These stages

include: Capture Frame, Face Detection, Feature Extraction, Train Machine

Learning Technique and Emotion Classification. Figure 4.1 serves as a visual

aid for the content that follows.

Figure 4.1: High-Level View of System

Looking at Figure 4.1, the High-level view is explained as:

1. Capture Frame – The web camera records a constant stream of video

input. The video input consists of a sequence of multiple image frames.

16
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The system captures each frame for processing as it is displayed on the

video feed.

2. Face Detection – Now that we have captured a single frame, we need

to check if there is a face present in the frame. This is done using a face

detection algorithm. If a face is present in the frame, the location of the

face is extracted. The rest of the image is disregarded at this point.

3. Feature Extraction – Every emotion displayed facially has it’s own

set of unique identifying features. By applying feature extraction we are

able to represent these features in a way that a computer can understand

and process. The feature extraction method is applied to the region of

the image that contains the face.

4. Train Machine Learning Technique – Machine learning is a method

used by computers to learn how to identify patterns in a given set of

features. This process is called training. When we train the system, our

features are labelled numerically from 1 to 7 and correspond with the

classes (Angry, Disgust, Fear, Happy, Sadness, Surprise and Neutral).

Labelling the features helps guide the computer in the learning process.

5. Emotion Classification – When the training is complete, classification

helps to test the accuracy of the trained model. At this point the model

should be able to identify emotions given unlabelled features.
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4.3 Low-Level View of the System

The high-level view of the system dives deeper into the details of the compo-

nents used to implement the system. This is done following the same stages

used in the high-level view of the system. In this section we will look at three

conceptual low-level views that relate to our system. These views are aligned

to the processes followed in image processing, Support Vector Machine model

testing & training and implementing the final system.

4.3.1 Low-Level View of Image Processing

The first low-level view is a visual representation of how the high-level view

relates to the image processing techniques discussed in Chapter 3 is presented

in Figure 4.2.

Figure 4.2: Low-Level View of Image Processing

4.3.2 Low-Level View of SVM Model Optimization, Testing &

Training

The second low-level view relates to the training and testing of the SVM

model used to classify the emotions. Where the ‘Capture Frame’ stage is

replaced by ‘Get Images from Dataset’. The results given in this section aim

to contextualize the information given. The results pertaining to the testing

or classification of the SVM model after training will be discussed further in

Chapter 5. The code used to implement the SVM Optimization, Testing and

Training can be found in Appendix B, Section B.1.2.
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Figure 4.3: Low-Level View of SVM Model Testing & Training

Looking at Figure 4.3, the Low-level view for SVM model testing and

training is explained as:

1. Get Images From Dataset – The Extended Cohn-Kanade Dataset

[5] is used as data for the training and testing of our SVM model. The

images are divided into seven groups, whose labels are: Angry, Disgust,

Fear, Happy, Sadness, Surprise and Neutral. The Table 4.1 provides the

total number of images present for each label.

Emotion Label N
Angry 45
Disgust 59

Fear 25
Happy 69
Sadness 28
Surprise 83
Neutral 35

Table 4.1: CK+ Image Labels and Totals

2. Face Detection – The Viola-Jones face detection is used to extract the

face from each image in the CK+ dataset. The face region of the image

is stored as a 56× 56 pixel grayscale image.

3. Feature Extraction – The resulting images from the face detection

are used as inputs for the Histogram of Oriented Gradients which gives
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a one-dimensional feature vector for each image. Each image is given a

numerical label from 1 to 7 based on the emotion displayed in the image,

see Table 4.2 for the labels. The feature vector is stored in the feature

dataset with the corresponding numerical emotion label(e.g. [Numerical

Label][Feature Vector]).

Emotion Label Angry Disgust Fear Happy Neutral Sadness Surprise
Numerical Label 1 2 3 4 5 6 7

Table 4.2: Emotions with corresponding Labels for the feature vectors

The parameters used for the HOG are listed in Table 4.3. The optimiza-

tion of the HOG parameters is discussed in Section 4.3.4.

Parameter Size Type
Image (56, 56) Pixels
Cell (4, 4) Pixels

Block (3, 3) Cells
Overlap 66.66% Blocks

Bins 9 (0◦-180◦) Unsigned Gradients
Feature Vector Size: 11664

Table 4.3: HOG Parameters

4. Train Machine Learning Technique – The machine learning tech-

nique used to do the classification for our system is Support Vector

Machines. [5] Used SVMs to test the accuracy of their CK+ dataset

due to its proven accuracy with face and facial action detection. Binary

classification is the simplest example for explaining how SVMs work.

Where the SVM attempts to separate the closest negative and positive

points in each class from each other. Once this separation is achieved it

makes it easier to separate negative and positive points that are further

away from each other, as the similarities in these points are less than

those in the points that are closer. The distance between these points

is calculated by subtracting the positive and negative points from each

other. The positive and negative points closest to each other are con-

sidered our support vectors, these help in determining the separating

hyperplane. The SVM needs to ensure that the distance between the
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support vectors is maximized. Figure 4.4 visualizes the concepts dis-

cussed.

Considering that we have multiple classes in our dataset the ‘one versus

all’ method was used to train the SVM model. This is where one class is

labelled as positive (c) whilst the other classes are labelled as negative

(n − c). All of the classes (n) are given the opportunity to be labelled

as the positive class and the SVM model is generated.

Figure 4.4: Key Functions of a SVM [4]

(a) Cross-Validation – The feature dataset compiled after completing

the feature extraction is used as input for the SVM. Where the

dataset is divided into a training and testing dataset. The percent-

age of the split is dependent on how well the model performs with

each split. A 60% training and 40% testing split was used for the

SVM. Both these datasets should contain an equal distribution of

the emotion labels in each dataset. This step ensures that all labels

appear equally in both datasets. The Cross-validation score using a

stratified K-fold of 3 is approximately 84%. Cross-validation mea-

sures the overall performance of the SVM model on different train-

ing and testing data splits [14]. This tests the independence of the

model to the dataset and helps to prevent overfitting in our model.

K-fold cross-validation is done by splitting the dataset into K sub-

sets of equal length. Each subset is then tested on the SVM model

of the remaining K-1 subsets. Stratified K-fold cross-validation en-
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sures that the classes are distributed equally in each subset. The

training dataset is used as input for training our SVM and creating

the SVM model that will be used in our system.

(b) Grid-Search – After optimizing the SVM model with grid-search a

Linear Kernel with a C of 1 was used. Grid search helps to find

the optimal parameters for the SVM model. Where C determines

the extent to which the SVM model should avoid misclassification

in the training [14]. Larger values of C decrease the margin of the

hyperplane which aims to increase the accuracy of the training. A

smaller value for C increases the margin of the hyperplane, but car-

ries the downside of more misclassified training data points. In [14]

it is recommended that the optimal range of that should to be inves-

tigated in order to find the best value for C is C = 2−5, 2−3, ..., 215.

5. Emotion Classification – The testing dataset is used to asses the per-

formance of the the trained SVM model on unseen data. Where the SVM

model is given the testing dataset features without the corresponding la-

bels. The results of the SVM model classification are then compared to

the original labels to test the accuracy of the SVM model. The SVM

model trained for our system has an overall accuracy score of 88.2%.

4.3.3 Low-Level View of Final System

The third low-level view shows how the process of Automatic Human Emotion

Detection is streamlined for user interaction. Where classifications are per-

formed live as the user changes their facial expressions. At this point we use

the ’Trained SVM Model’ with the HOG parameters from Table 4.3 above.
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Figure 4.5: Low-Level View of Final System

4.3.4 Optimizing HOG features

This section covers the different combinations for the HOG parameters that

were considered before the values in Table 4.3 were chosen. The HOG im-

plemented from scratch by us is compared to the OpenCV HOG using the

Python Sklearn SVM library. All the other parameters remained the same at

this point, the dataset had a 60% training and 40% testing dataset. The SVM

model optimized to a Linear Kernel with a C of 1 for each iteration of the

HOG features optimization. Both HOGs maintained a bin size of 9 and 50%

overlap for Block (2, 2), with a 66.66% overlap for Block (3, 3).

Accuracy of HOG Parameters
- Cell (8, 8) Block (3, 3) Cell (4, 4) Block (3, 3)

OpenCV HOG 86% 88.2%
AHED HOG 77.9% 75.7%

Cell (8, 8) Block (2, 2) Cell (4, 4) Block (2, 2)
OpenCV HOG 83.8% 83.8%
AHED HOG 77.9% 82.3%

Table 4.4: HOG Optimization

4.4 Conclusion

The Automatic Human Emotion Detection system was implemented entirely

using Python. OpenCV is used for the Viola-Jones face detection, Sklearn
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was used to implement the Histograms of Oriented gradients and the Support

Vector Machines. The HOG implementation done from scratch used python

numpy arrays and followed the implementation method discussed in Chapter

3. The highest accuracy achieved for the HOG implemented with OpenCV

was 88.2% and 82.3% with the HOG implemented in this project.



Chapter 5

Testing

5.1 Introduction

This chapter looks at the results from training, testing and optimizing of the

SVM Model selection process, in Section 5.1.1. Table 5.1 gives an overview

of the formulas and terms used in Figure 5.2 and Table 5.2 to describe the

results.

SVM Model Evaluation
Term Formula Description

Type I Error FP False Positive
Type II Error FN False Negative

Accuracy TP+TN
TP+TN+FP+FN

Evaluates the degree of correctness for the predictions

Precision TP
TP+FP

The Positive predictive value

Recall TP
TP+FP

True positive rate

F1-Score 2× precision×recall
precision+recall

Evaluates the accuracy of predictions

Table 5.1: Terminology and formulas used for evaluating the SVM Model [1]

5.1.1 Analysis of SVM Testing Results

The test set for testing the SVM model consisted of 136 entries, which is 40%

of the initial CK+ dataset. The overall accuracy of the SVM Model is 88.2%,

across all subjects and emotions. Table 5.2 contains the ‘SVM Model Clas-

sification Report’. The report indicates the performance of each individual

class, or emotion, and the overall estimated performance of the SVM model

with regards to the precision, recall and f1-score. Classes that had more data

available performed better overall as compared to those that had less. Since

there was more testing data available for these classes. Working with an un-

even dataset, see Figure 5.1, makes it harder to judge the performance of each

class in comparison to the other classes.

25
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Figure 5.1: SVM test set breakdown

The emotions labelled Disgust, Happy and Surprise had over 24 subjects

in the test set. This resulted in a higher f1-score for prediction accuracy of

these emotions. Where the emotions labelled Sad, Neutral, Fear and Angry

had significantly lower f1-score and fewer subjects in the test set.

SVM Model Classification Report
Label precision recall f1-score Sample Total
Angry 0.74 0.82 0.78 17
Disgust 1.00 0.92 0.96 24

Fear 0.86 0.60 0.71 10
Happy 0.93 1.00 0.96 27
Neutral 0.67 0.71 0.69 14

Sad 0.75 0.82 0.78 11
Surprise 1.00 0.97 0.98 33

Avg Total 0.89 0.88 0.88 136

Table 5.2: SVM Classification Report

5.1.2 Analysis of Confusion Matrix for Test Results

A confusion matrix summarises the outcomes of the classification based on the

the actual labels of the testing data and those obtain from testing. The val-

ues obtained from the confusion matrix help with analyzing the SVM model.

Figure 5.2 shows the confusion matrix for our SVM model. The diagonal

starting at the top-left index till the bottom-right index contains all the true

positives/negatives for our SVM model. Considering that a large portion of

the test set lies on this diagonal, the model created is exceptionally stable and
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has a few random misclassifications.

Figure 5.2: Confusion Matrix of SVM Model Classification

5.1.3 Analysis of SVM Testing Results for Subjects

The results in the table,In Figure 5.4 and 5.5, look at all the individual sub-

jects within the test set and their classification performance using the SVM

model. The original CK+ dataset is uneven in that not all subjects had all

seven emotions present in the dataset. This made it challenging to split the

dataset evenly based on subjects. The split was done by ensuring that each

emotion had the same test-train ratio for the training dataset and the testing

dataset.

In the results table, the green represents a correct classification under the

indicated ”Emotion Label” and the red blocks indicate a misclassification for

that emotion and the misclassification is included in white text. Each sub-

ject had at least one emotion classified during testing, with a maximum of

five emotions for subject ’S055’. The results in the table show that a vast

majority of the blocks are shaded in green which indicates that most of the

emotions were classified correctly, only a few of the blocks are shaded in red.

None of the subjects had more than one misclassification, this indicates that

the model is robust to changes in test subjects. See Figure 5.3 for a sample

of the subjects in the CK+ dataset. The subjects are diverse in age, race and

gender.
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Figure 5.3: Subject sample from the CK+ Dataset [5]

Figure 5.4: SVM Testing and Training Results for Subjects
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Figure 5.5: SVM Testing and Training Results for Subjects

5.2 Conclusion

The overall accuracy result for the SVM model was strong and generalized

well with unseen data. Taking in to consideration that dataset used was not

even, a further unbiased analysis on the results for individual subjects in the

dataset was not possible. The dataset was split with the intention of having

an equal ratio of subjects for each class in the testing set and the trainging

set. As a result of this split analyzing the test results under each class proved

to be more logical.



Appendix A

User Guide

A.1 Introduction

This chapter covers all that is required from the users computer when running

the AHED system. The AHED system has an interface for user interaction

and provides live feedback on facial expressions. The interface is simple, see

Figure A.1, and has the following funtionalities:

• A live video output stream.

• Real time emotion classification on the right hand side of the screen.

This is where each emotion probability is given for the frame.

• An Emoji(icon) that dispays the dominant emotion in the frame.

• ‘Start Video’ Button – Initiates the video output stream.

• ‘End Video’ Button – Pauses the video output stream.

• ‘Quit’ Button – Closes the program window.

Figure A.1: The Graphical User Interface for the AHED System

30
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A.1.1 System Requirements

These are the packages and programs needed to run the AHED system:

• Python 2.7

• PyQt4

• OpenCV

• Webcamera (preferably HD 1080p)

• Scikit-Image

• Numpy

• Pickle

• Windows 10 or Ubuntu 16.04 operating sytem (preferably x64 and needs

to support the libraries and packages above)

• Note: Use JetBrains PyCharm on Windows, makes it easier to install

missing libraries from python.

A.1.2 Instructions

Download ‘AHED.zip’ from ‘http://cs.uwc.ac.za/ tlehata/index.html’ under

‘Term 4’. After ensuring that your system requirements meet those stated

above, unzip the ‘AHED.zip’ folder. Open a terminal window or CMD window

in the folder that contains ‘guiAHED.py’. To continue follow the instructions

under your desired operating system.

A.1.2.1 Ubuntu

• $ workon cv

• $(cv) python guiAHED.py

A.1.2.2 Ubuntu

• $ python guiAHED.py
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A window should open up after a few seconds that looks the same as the one

in Figure A.2. After that you can proceed and press ‘Start Video’ to start

interacting with the system.

Figure A.2: Initial Start Interface for the AHED System

A.1.3 Feedback

To leave feedback or for further assistance and questions send me an email on

‘3342317@myuwc.ac.za’.



Appendix B

Code Documentation

B.1 Introduction

This chapter includes all the source code used for implementing the Feature

Extraction and SVM Training and Testing for the Automatic Human Emotion

Detection system.

B.1.1 Feature Extraction Python Code:

1 import sys

2 import cv2

3 import numpy as np

4 from skimage.feature import hog

5 from skimage import img_as_float

6

7 # a trained model for locating faces within an image

8 faceCascade = cv2.CascadeClassifier('Files/haarcascade_frontalface_alt.xml')

9

10 class FeatureExtraction():

11 # ------------------------------------------------------------------------------

12 # ----------------------------Viola-Jones Face Detection------------------------

13 # ------------------------------------------------------------------------------

14 def viola_jones(self, image):

15 # set the height and width of face images

16 height = 56

17 width = 56

18

19 # create an temporary 'image' of zeros

20 scaled = np.zeros((height, width), dtype=np.float)

21

22 # set the properties of the faceCascade

23 faces = faceCascade.detectMultiScale(image, 1.3, 5)

24

25 # set variables for finding the largest face in an image

26 max_size = 0 # w*h

27 X = Y = W = H = 0

28

29 # keeping track of x,y,w,h in order to find the biggest face

30 for (x, y, w, h) in faces:

31 if max_size < w * h:

33
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32 max_size = w * h

33 X = x

34 Y = y

35 W = w

36 H = h

37

38 # cater for when there are no faces in the image 'max_size = 0'

39 if max_size != 0:

40 # draw a rectangle identifying the location of the face in the image

41 cv2.rectangle(image, (X, Y), (X + W, Y + H), (192, 192, 192), 2)

42

43 # store the location with the face as our region of interest 'roi'

44 roi = image[Y:Y + H, X:X + W]

45

46 # convert the roi to grayscale

47 gray = cv2.cvtColor(roi, cv2.COLOR_RGB2GRAY)

48

49 # resize the roi so that all the roi's are uniform

50 scaled = cv2.resize(gray, (height, width))

51

52 return scaled, image

53

54 # ------------------------------------------------------------------------------

55 # -----------------------------------My HOG-------------------------------------

56 # ------------------------------------------------------------------------------

57 # Note: gradients work only on grayscale images

58

59 # calculate the gradient in the X direction (gx)

60 def gx(self, scaled):

61 y, x = scaled.shape

62 scaled = np.lib.pad(scaled, 1, 'constant', constant_values=0)

63 gx = np.zeros((x, y))

64 # sobelX:

65 # [1 ,0 ,-1]

66 # [2 ,0 ,-2]

67 # [1 ,0 ,-1]

68 for i in range(y):

69 a = np.convolve(scaled[i - 1, :], [1, 0, -1], 'valid')

70 b = np.convolve(scaled[i, :], [2, 0, -2], 'valid')

71 c = np.convolve(scaled[i + 1, :], [1, 0, -1], 'valid')

72 gx[i, :] = np.sum([a, b, c], axis=0)

73 return gx

74

75 # calculate the gradient in the Y direction (gy)

76 def gy(self, scaled):

77 y, x = scaled.shape

78 scaled = np.lib.pad(scaled, 1, 'constant', constant_values=0)

79 gy = np.zeros((x, y))

80 # sobelY:

81 # [-1 ,-2 ,-1]

82 # [0 ,0 ,0]
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83 # [1 ,2 ,1]

84 for j in range(x):

85 a = np.convolve(scaled[:, j - 1], [1, 0, -1], 'valid')

86 b = np.convolve(scaled[:, j], [2, 0, -2], 'valid')

87 c = np.convolve(scaled[:, j + 1], [1, 0, -1], 'valid')

88 gy[:, j] = np.sum([a, b, c], axis=0)

89 return gy

90

91 # calculate magnitude of the gradient('intensity')

92 def magnitude(self, gx, gy):

93 magnitude = np.sqrt(gx ** 2 + gy ** 2)

94 return magnitude

95

96 # calculate orientation of the gradient('direction')

97 def orientation(self, gx, gy):

98 # output is the same output as cv2.cartToPolar

99 orientation = (np.arctan2(gy, gx) / np.pi) % 2 * np.pi

100 return orientation

101

102 # calculate the HOG using an algorithm developed from my documentation

103 def calculate_myhog(self, scaled):

104 # gradients gx and gy

105 gx = self.gx(scaled)

106 gy = self.gy(scaled)

107

108 # magnitude and orientation

109 magnitude = self.magnitude(gx, gy)

110 orientation = self.orientation(gx, gy)

111

112 # orientation bins

113 bin_n = 9

114 bins = np.int32(bin_n * orientation / (2 * np.pi))

115

116 # magnitude and orientation cells within a block

117 bin_blocks = []

118 mag_blocks = []

119 epsilon = sys.float_info.epsilon

120

121 # size of block

122 blocksize = 3

123

124 # size of cell

125 cellsize = 4

126

127 # store the height and width of the face image(roi)

128 width = scaled.shape[0]

129 height = scaled.shape[1]

130

131 # create the parameters for the block slider

132 y = ((height - (cellsize * blocksize)) / cellsize) + 1

133 x = ((width - (cellsize * blocksize)) / cellsize) + 1
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134

135 # stores all the histograms in an image

136 histograms = []

137

138 # loops through each block in a image(i,j)

139 # using a block "slider" to capture all posible blocks

140 for i in range(0, y, 1):

141 for j in range(0, x, 1):

142 # magnitude and orientation cells within a block

143 bin_block = bins[i * cellsize: i * cellsize + blocksize * cellsize,

144 j * cellsize: j * cellsize + blocksize * cellsize]

145 mag_block = magnitude[i * cellsize: i * cellsize + blocksize * cellsize,

146 j * cellsize: j * cellsize + blocksize * cellsize]

147

148 tempHists = []

149 sumHists = np.zeros((9,))

150

151 # loops through each cell in a block(m,n)

152 # this ensures that all the histograms in each cell are calculated

153 for m in range(0, blocksize * cellsize, cellsize):

154 for n in range(0, blocksize * cellsize, cellsize):

155

156 # magnitude and orientation cells within a cell

157 cellBin = bin_block[m:m + cellsize, n:n + cellsize]

158 cellMag = mag_block[m:m + cellsize, n:n + cellsize]

159

160 # temporarily store the histograms

161 tempHists.append(np.bincount(cellBin.ravel(),

162 cellMag.ravel(), bin_n))

163

164 # store the sum of the histograms within a block

165 # this will be used for block normalization

166 sumHists = np.sum([sumHists, np.bincount(cellBin.ravel(),

167 cellMag.ravel(), bin_n)], axis=0)

168

169 # sum up all the bins

170 sumHists = np.sum(sumHists)

171

172 # normalize all the cell histograms in the block

173 for hist in tempHists:

174 histograms.append(np.divide(hist, np.sqrt(

175 np.add(np.square(sumHists), np.square(epsilon)))))

176

177 # store the magnitude and orientation for the block

178 bin_blocks.append(bin_block)

179 mag_blocks.append(mag_block)

180 # create the HOG feature vector

181 hist = np.hstack(histograms)

182 return hist

183

184 # ------------------------------------------------------------------------------
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185 # ---------------------------------OpenCV HOG-----------------------------------

186 # ------------------------------------------------------------------------------

187

188 # HOG implementation from skimage, using prefered parameters

189 def hog_opencv(self, image):

190 image = img_as_float(image) # convert unit8 tofloat64 ... dtype

191 orientations = 9 # orientation bins

192 cellSize = (4, 4) # pixels_per_cell

193 blockSize = (3, 3) # cells_per_block

194 blockNorm = 'L1-sqrt' # {'L1', 'L1-sqrt', 'L2', 'L2-Hys'}

195 visualize = True # Also return an image of the HOG.

196 transformSqrt = False

197 featureVector = True

198 fd, hog_image = hog(image, orientations, cellSize,

199 blockSize, blockNorm, visualize, transformSqrt,

200 featureVector)

201 return fd

202

203 # testing features

204 def main(self):

205 image = cv2.imread('Files/lense.png')

206 scaled, image = self.viola_jones(image)

207 print(self.calculate_myhog(scaled).shape)

208 fd = self.hog_opencv(scaled)

209 print(fd.shape)

210

211

212 if __name__ == '__main__': FeatureExtraction().main()
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B.1.2 SVM Training and Testing Python Code:

213 import sys

214 import pandas as pd

215 from sklearn import svm

216 from sklearn.model_selection import GridSearchCV, cross_val_score, StratifiedKFold,

217 train_test_split

218 from sklearn.metrics import confusion_matrix, accuracy_score, classification_report

219 import pickle

220

221

222 class Tester():

223 def run_test(self, data, modelname):

224 print '\n######################################################################'

225 print '##########################~', modelname, '~#####################'

226 print '######################################################################'

227

228 dataset = pd.read_csv(data)

229

230 X = dataset.ix[:, 1:].values

231 y = dataset.ix[:, 0].values

232

233 X_train, X_test, y_train, y_test = train_test_split(X, y,

234 test_size=.40, stratify=y, random_state=40)

235

236 # Grid search parameters:

237

238 # C = np.logspace(-5, 15,num=21,base = 2.0)

239 # gamma = np.logspace(-15, 3, num=19,base = 2.0)

240 param_grid = [

241 {'C': [1, 10, 100, 1000], 'kernel': ['linear']},

242 {'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},

243 ]

244

245 # choose svm type: SVC - Support Vector Classification(based on libsvm)

246 svc = svm.SVC(probability=True)

247

248 print '\n######################################################################'

249 print '#############################~SVM Grid Search~########################'

250 print '######################################################################'

251 clf = GridSearchCV(svc, param_grid)

252 print '\t Parameter Grid:\n', param_grid

253

254 print '\n######################################################################'

255 print '##########################~SVM Cross Validation~######################'

256 print '######################################################################'

257 skf = StratifiedKFold(n_splits=3, random_state=None, shuffle=False)

258 scores = cross_val_score(clf, X, y, cv=skf, n_jobs=-1)

259 print '\t Cross validation scores: \t', scores

260 print '\t Cross validation Accuracy:

261                         \t %0.2f (+/- %0.2f)' % (scores.mean(), scores.std() * 2)

262
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263 print '\n######################################################################'

264 print '#############################~SVM Train~##############################'

265 print '######################################################################'

266 clf = clf.fit(X_train, y_train)

267 filename = modelname

268 pickle.dump(clf, open('Files/'+filename, 'wb'))

269 print '\t Best score for classifier:\t', clf.best_score_

270 print '\t Best C:\t', clf.best_estimator_.C

271 print '\t Best Kernel:\t', clf.best_estimator_.kernel

272 print '\t Best Gamma:\t', clf.best_estimator_.gamma

273 print '\t SVM Best Estimator:\t', clf.best_estimator_

274 print '\n\t SVM Grid Scores: \n', clf.cv_results_

275

276 print '\n######################################################################'

277 print '#############################~SVM Predict~############################'

278 print '######################################################################'

279 clf = pickle.load(open('Files/'+modelname, 'rb'))

280 y_pred = clf.predict(X_test)

281 print 'SVM Classification Report:'

282 print classification_report(y_test, y_pred,

283 target_names=['Angry','Disgust','Fear',

284 'Happy','Neutral','Sad', 'Surprise'])

285 print 'SVM Confusion Matrix:'

286

287 print confusion_matrix(y_test, y_pred, labels = [1,2,3,4,5,6,7])

288 print '\t SVM Accuracy Score:', accuracy_score(y_test,y_pred,normalize=True)

289 print 'file:', data

290

291 print '\n######################################################################'

292 print '#############################~SVM Test Results~############################'

293 print '######################################################################'

294 for i in range(len(X_test_names)):

295 print 'Subject:',X_test_names[i],'\t Label:',y_test[i],

296 '\t Prediction:',y_pred[i]

297

298 def main(self):

299 print 'Output is printed to Files/test.out'

300 orig_stdout = sys.stdout

301 output = open('Files/test.out', 'w+')

302 sys.stdout = output

303 self.run_test('Files/dataCsv.csv', 'finalized_model.sav')

304 sys.stdout.close()

305 sys.stdout = orig_stdout

306 print 'Done ^_^'

307 if __name__ == '__main__': Tester().main()
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