
Development of a Remote Sensor
Network to Monitor a Solar Power

System

Zenville Erasmus

Project presented in fulfilment
of the requirements for the degree of
B.Sc. (Honours) of Computer Science
at the University of the Western Cape

Supervisor: Professor Antoine Bagula

October 2014

ii

Declaration

I, Zenville Erasmus, declare that this project “Development of a Remote

Sensor Network to Monitor a Solar Power System” is my own work, that it

has not been submitted before for any degree or assessment at any other uni-

versity, and that all the sources I have used or quoted have been indicated

and acknowledged by means of complete references.

Signature: . Date: 24th October 2014.

Zenville Erasmus.

iii

iv

Abstract

The purpose of this project is to discuss the development of a cost effective

remote sensing network (RSNET) for the continuous acquisition of remote

energy yields and performance measures of a network of installed solar power

systems. As a new innovative solution that demonstrates a low cost mechanism

using the existing mobile network infrastructure, the remote sensor system to

be developed presents the following key benefits:

• Access to Photovoltaic (PV) system from anywhere through the use of

the Internet.

• Reports of power output and energy production trends.

• Verification of system operation.

• Collection of data for service and maintenance planning.

• Use of least cost devices to enable replicability of the solution.

The main features of the remote sensor network include:

1. solar power consumption monitoring using sensors which measure panel

voltage and current capture

2. information dissemination using SMS and GPRS protocols

3. data publishing using Web services based on PHP and associated graph-

ing tools

4. and situation recognition (awareness and prediction) using machine learn-

ing techniques and/or statistical analysis methods.

v

Key words

Remote Sensor Network

Solar Power System

Photovoltaic

Remote sensor system

Information dissemination

Situation recognition

Machine learning techniques

Statistical analysis methods

vi

Acknowledgements

This project is a compilation of the efforts of many people that helped me

through the year. I would first like to thank my supervisor, Prof. Antoine

Bagula and Prof. G. Swart for supporting and encouraging me during my

Honours year. Without our weekly meetings, this work would not have been

possible. Without their help, this project would not have reached a develop-

mental milestone. I would also like to thank The Namibian Student Financial

Assistance Fund (NSFAF) and the UWC Computer Science department for

their unwavering financial assistance without which our efforts would not have

been possible.

vii

Contents

Declaration . iii

Abstract . v

Key words . vi

Acknowledgements . vii

List of Figures . xii

Glossary . xiv

1. Introduction . 1

1.1 Motivation . 1

1.2 Contribution and Outline . 1

2. User Requirements . 4

2.1 Introduction . 4

2.2 User’s view of the problem . 4

2.2.1 The storage of renewable energy 4

2.2.2 Measuring readings . 4

2.2.3 Technology used to take measurements 5

2.2.4 Traffic . 5

2.3 Description of the problem . 5

2.3.1 The storage of renewable energy 5

2.3.2 Measuring readings . 5

2.3.3 Technology used to take measurements 5

2.3.4 Traffic . 6

2.4 Expectations from a Software Solution 6

2.4.1 Interaction with Users . 6

2.4.2 Measuring readings and Technology used 6

2.4.3 Traffic . 6

2.5 Conclusion . 7

3. Requirements Analysis . 8

3.1 Introduction . 8

3.2 Designer’s interpretation of the problem 8

3.3 Software and programming tools needed to develop this system 9

viii

3.4 Existing solutions . 10

3.4.1 An evaluation of the Solar Monitoring System in Malawi 10

3.4.2 SIMbaLink: Towards a Sustainable and Feasible Solar Rural
Electrification System . 11

3.5 Alternative technical solutions 12

3.5.1 Indoor solar energy harvesting for sensor network router nodes . 12

3.6 Suggested Solution . 13

3.7 Conclusion . 13

4. User Interface Specification . 15

4.1 Introduction . 15

4.2 Interface appearance . 15

4.2.1 Web Portal . 15

4.2.2 Android Application . 20

4.3 Conclusion . 20

5. Object Oriented Analysis or High Level Design 21

5.1 Introduction . 21

5.2 Data dictionary . 21

5.3 Relationships between objects 22

5.4 Full solution components . 23

5.5 Conclusion . 23

6. Object Oriented Design or Low Level Design 24

6.1 Introduction . 24

6.2 Low Level data dictionary . 24

6.3 Low Level Design . 26

6.4 Conclusion . 26

7. Documentation . 27

7.1 Introduction . 27

7.2 Project Construction . 27

7.3 Sensors and their Metrics . 30

7.3.1 Precision Voltage Sensor . 30

7.3.2 30 Amp Current Sensor AC/DC 30

7.3.3 Humidity/Temperature Sensor 31

7.3.4 Light Sensor 70 000 lux : Luminosity sensor 31

7.3.5 Phidget Interface Kit 8/8/8 . 32

ix

7.4 Voltage Sensor Setup . 34

7.5 Current Sensor Setup . 35

7.6 Raspberry Pi . 36

7.7 Raspbian installation . 37

7.8 State of Charge . 39

7.9 Code Documentation . 40

7.9.1 Gathering data from sensors . 41

7.9.2 Sensing with the Raspberry Pi 42

7.9.3 Android function to retrieve readings from MySQL database . . 42

7.9.4 Android Application Execution 44

7.10 Conclusion . 45

8. Testing and Results . 46

8.1 Introduction . 46

8.2 Testing procedure . 46

8.3 White-Box testing - Static Testing 46

8.4 Stress Testing . 47

8.5 Performance Testing . 47

8.6 Testing results . 47

8.6.1 Environment - Lab vs outside 47

8.6.2 Environment - Phidget Sensor vs Lab Thermometer vs Air-conditioner
Remote . 48

8.6.3 Phidget Sensors vs Accuweather 49

8.6.4 Panel voltage - Lab vs outside 49

8.6.5 Phidget Sensors vs Multimeter 49

8.6.6 Charge Controller Terminals . 50

8.6.7 SMS Notification . 51

8.6.8 Luminosity results . 52

8.6.9 Averages of last 2 days . 53

8.7 Conclusion . 53

9. User Guide . 54

9.1 Introduction . 54

9.2 Sensors and Phidget Interface Kit 54

9.3 Raspberry Pi . 54

9.4 Web Portal . 55

9.5 Android Application . 56

9.6 Conclusion . 56

x

10. Conclusion . 57

Bibliography . 58

xi

List of Figures

3.1 System Architecture: Solar PV with Wireless Sensor and Central
Management Servers (Source: SM2. Image by Nkoloma) 10

3.2 4 data readings per day based on the SIMbaLink System (Source:
SM2. Image by Nkoloma) . 11

3.3 Integration of SIMbaLink with the other components of a solar
home system (Source: SIMbaLink. Image by Schelling) 12

4.1 Login screen for accessing the Web Portal 16

4.2 Remote sensor system details on Web Portal 16

4.3 Remote sensor system state of charge 17

4.4 Remote sensor system live bar graph 17

4.5 Remote sensor system averages of last 3 days 18

4.6 Remote sensor system averages of daily luminosity 18

4.7 Remote sensor system averages of sensor readings plotted against
each other . 19

4.8 Remote sensor system details on Android App 20

5.1 Input to output . 22

5.2 System processing . 23

6.1 Sensing state diagram . 26

7.1 Remote Sensor System / Network 27

7.2 Circuit diagram / Schematic / Layout of prototype 28

7.3 Pocket Power . 29

7.4 Precision Voltage Sensor . 30

7.5 30 Amp Current Sensor AC/DC 30

7.6 Humidity/Temperature Sensor 31

7.7 Light Sensor 70 000 lux: Luminosity sensor 32

7.8 Phidget Interface Kit 8/8/8 . 32

7.9 Voltage sensor in parallel . 34

xii

7.10 Voltage sensor schematics . 34

7.11 Current sensor connected in series 35

7.12 Current sensor schematics . 35

7.13 Raspberry Pi Model B . 36

8.1 Incremental approach . 46

8.2 Battery leaching vs AC Power 48

8.3 Ambient Temperature (◦C) and Relative Humidity (%) 49

8.4 SMS Notification sent out for an approximal 0% SOC reading . . 51

8.5 Average lab luminosity readings on 2 Oct 2014 52

8.6 Averages of last 2 days . 53

xiii

Glossary

RSNET Remote Sensing Network

PV Photovoltaic

SMS Short Message Service

GPRS General Packet Radio Services

PHP PHP Hypertext Preprocessor

NSFAF Namibia Student Financial Assistance Fund

URD User Requirements Document

RAD Requirements Analysis Document

GSM Global System for Mobile communications

SAIAMC South African Institute of Advanced Materials Chemistry

SHS Solar Home System

WSN Wireless sensor networks

ECGs Electrocardiograms

OOA Object Oriented Analysis

HLD High Level Design

OOD Object Oriented Design

LLD Low Level Design

SBC Single Board Computer

xiv

Chapter 1

Introduction

The goal of this project is to discuss the development of a remote sensing net-

work (RSNET) which will continuously acquire energy yields and performance

measures of renewable energy solar power systems.

1.1 Motivation

Since sensor technology is a new field that is receiving global research and

since renewable energy technologies are on the rise, the combination of the

two would allow the monitoring of the latter mentioned system from remote

locations. This would most certainly eliminate the need for an engineer to

travel to far off locations, connect a PC or laptop to present monitoring devices

and download the data manually.

Since the Photovoltaic system could be accessed from any location due

to the proliferation of web technologies, an engineer would instead have a de-

tailed data flow of power outputs and energy production trends. The system’s

operation could also be verified to ensure data integrity and this would also

lead to the scheduling of service and maintenance planning. In order to release

such a system for market purposes, a least cost solution has to be considered

in order to replicate the solution to multiple sites.

1.2 Contribution and Outline

The project discusses the conception of a remote sensing network for the SA-

IAMC1 Li-ion Battery Product Development program. Their objectives state

that they want to develop affordable batteries technology based on South

African raw materials to meet the energy storage demands for renewable en-

ergy, smart grid and cleaner transportation markets. It is within this market,

that the project focuses its attention.

1South African Institute of Advanced Materials Chemistry

1

2

In this project we design and implement a RSNET which will gather

sensor information from a battery system and relay the data for data publish-

ing purposes, situation recognition, using machine learning techniques and/or

statistical analysis methods.

The project has ten chapters. This first chapter provides an introduction

to the project. The second chapter discusses the User Requirements Document

(URD). Chapter 3 discusses the Requirements Analysis Document (RAD) that

has been used in the RSNET and describes the technologies and the reasons

why they have been chosen. The fourth chapter discusses the user interface

specification, which namely focuses on the web portal and android application.

Chapter 5 illustrates the high level design of the project and chapter 6 follows

up with the low level design. The implementation documentation is discussed

in chapter 7 followed by testing and results in chapter 8. Chapter 9 will include

a user guide to indicate how the system is to be setup and used. The final

chapter concludes and gives an overview of the project and suggests possible

future work which may be undertaken.

3

Chapter 2

User Requirements

2.1 Introduction

In this chapter we focus on the user’s view of the problem and give a brief

description of the problem domain. We also list similar systems in developing

countries implementing similar renewable energy solutions.

2.2 User’s view of the problem

2.2.1 The storage of renewable energy

In order for a renewable energy system to be efficient, the energy it generates

has to be stored in a manner so that it can be harnessed at times when there

exist no present generation environment. Such as when a Solar Panel can

capture no feasible light during the night or when a wind turbine has no

supply of wind in order to serve its purpose. Then systems connected to it

rely solely on the battery for sustainability. Knowing when the battery is

under performing could serve as a means to use less devices on it to have it

last longer until the next generation phase.

2.2.2 Measuring readings

A user of the system would typically want to know what a renewable energy

system is generating, the amount of power produced, voltage and current

readings at specific times of a 24 hour day. This would give users an indication

of when their system is most effective and least effective. They would also be

able to determine which locations serve as a more viable source for generation

capabilities. Having a system that could log such parameters would serve for

establishing renewable energy systems at best known locations.

4

5

2.2.3 Technology used to take measurements

In order to implement a successful monitoring system, devices known as sen-

sors need to be used. Using a sensor technology that is ready made, plug-

’n-play-able, easy to transport and cost efficient would grant such a system a

performance gap as data can be collected autonomously.

2.2.4 Traffic

Concerning data gathering which needs to happen continuously, sensors in

such a remote system can relay their data to another device which can broad-

cast the data with the aid of different technologies. This would serve much

faster than a human would if on-site with a portable computer, having to plug

his machine in and download the data.

2.3 Description of the problem

2.3.1 The storage of renewable energy

Whilst being charged by a photovoltaic panel, a battery will be able to only

hold a specific amount of energy. The health of the battery employed will

determine how much energy it can store. And this is where the project comes

into play as its purpose will serve to monitor the battery’s health and storage

capability as time progresses.

2.3.2 Measuring readings

When readings are taken by the monitoring system, that will indicate whether

the panel is producing energy as it should, whether environmental factors are

influencing the readings and whether the battery being used is in need of a

service or replacement. These readings could also be monitored over a certain

time period and predictions made based on past data.

2.3.3 Technology used to take measurements

The sensors to be utilized need to draw low power, need to be easily replaceable

and they need to be accurate.

6

2.3.4 Traffic

Traffic needs to be saved to a file or database that could be presented on

an online portal and then further displayed on hand held devices. If critical

alerts could be sent to mobile phones that are not smart phones, all users

could benefit and the system can be inspected to correct critical issues in its

operation.

2.4 Expectations from a Software Solution

2.4.1 Interaction with Users

The end-user requires the remote monitoring system to be integrated into

an online portal to graphically display what the system is gathering. Proper

graphing tools with various graphs and charts would satisfy performance ex-

pectations. A further enhancement would serve to port the readings to per-

sonal hand-held devices, smart phones and tablets based on the Android op-

erating system. The system should also relay critical alerts via Short Message

Service (SMS) technology based on the Global System for Mobile commu-

nications (GSM) protocol. Further expansions would involve the usage of

faster/better network protocols.

2.4.2 Measuring readings and Technology used

Users are not interested in mathematical notations and what rather just await

the final results of system performance. Thus only the most critical informa-

tion is of importance to them. The more detailed parameters would only be

of use to the engineering team in charge of the monitoring system.

2.4.3 Traffic

Users do not what to be irritated by constant SMS alerts or Android notifi-

cations. They would rather only receive time critical alerts/notifications and

would rather prefer to view the online portal when it suits them.

7

2.5 Conclusion

In this chapter we had a look at the user’s point of view concerning a battery

system for a photovoltaic panel. We also delved into how measurements are

to be taken and the technologies used to do so. Lastly, we focused on how

traffic should be handled.

The above topics were further described and expectations for a solution

were determined. In Chapter 3, we next discuss the designer’s interpretation

of the user’s requirements. We basically identify the ”real” problem(s).

Chapter 3

Requirements Analysis

3.1 Introduction

This chapter takes the user’s requirements and evaluates them from a de-

signer’s perspective. Since a software designer is considered to be astute in

his/her knowledge of the types of systems and solutions that perform better in

various environments, his/her perspective is important in the projects design

phase.

This chapter will identify the software systems and paradigms that will

best fit the user’s requirements. Please note that a detailed design solution

will not be given, yet the most beneficial means for an implementation will be

identified.

3.2 Designer’s interpretation of the problem

Renewable energy systems are a key ingredient to reducing green house emis-

sions and turning the tide on global warming. The current initiative of linking

a battery or battery pack to a photovoltaic system would allow the storage of

produced energy for times when that energy may be needed. Such as during

the evenings when the moon’s shadow is overcast of a region and no usable

light is available for the solar system.

With the battery concept, devices dependent on the solar system will

be able to function during the course of an entire day and will grant a service

that does not contribute to global warming. Thus, the initiative by SAIAMC

is very innovative as a first by South Africa in developing a new form of a

lithium-ion battery.

The project will focus on determining the health of such a battery, its

performance when charging and when discharging. This would serve as a

valuable tool in knowing if the battery can be released to markets and also

8

9

the expected life span that it could have.

Readings that are of great interest in such a solar panel, battery im-

plementation is the the monitoring module’s current, the module’s voltage,

charging current, discharging current, battery voltage, load current and load

voltage. These readings would give an indication of whether the battery used

is working as expected. They would also give us information pertaining to the

environment in which the solar panel and battery system is located. Infor-

mation that could be critical is the temperature of the region wherein which

the battery is seated, the relative humidity which could indicate a possible

oncoming shower, the lux - the amount of light reaching the light sensor at

a particular time of the day(indicating whether it is night or day), and the

altitude if necessary by a barometric sensor.

3.3 Software and programming tools needed to develop

this system

• libusb development libraries - A C library that gives applications easy

access to USB devices on many different operating systems. libusb is an

open source project [1].

• Phidget libraries - A library for a user-friendly system available for con-

trolling and sensing the environment [2].

• Phidget Python library - The python library for communicating with

phidgets.

• Python - A widely used general-purpose, high-level programming lan-

guage. Its design philosophy emphasizes code readability and its syntax

allows programmers to express concepts in fewer lines of code than would

be possible in other languages such as C.

10

3.4 Existing solutions

3.4.1 An evaluation of the Solar Monitoring System in Malawi

The project output gives direct access to generated electric power at the ru-

ral site through the use of wireless sensor boards and text message (SMS)

transmission over a cellular network. The SMS recipient at the central site

houses an intelligent management system based on FrontlineSMS for hosting

SMSs and publishing remote measurement trends over the Internet. Figure

3.1, gives an indication of the system implemented in Malawi.

Figure 3.1: System Architecture: Solar PV with Wireless Sensor and Cen-
tral Management Servers (Source: SM2. Image by Nkoloma)

The SIMbaLink project aims to provide sustainable electrification solu-

tions for rural areas. SIMbaLink is based on an extremely low cost real time

solar monitoring system that reduces the maintenance costs and the time to

repair. The system reveals important information about the battery’s state

of charge and daily energy usage. Data is transmitted over GSM cellular net-

works to a regional technician to allow remote system diagnostics. However,

data readings are only taken 4 times per day, as depicted by Figure 3.2, and

this does not enable real time trends to enable critical performance analysis

and timely detection of solar plant problems [3].

11

Figure 3.2: 4 data readings per day based on the SIMbaLink System
(Source: SM2. Image by Nkoloma)

3.4.2 SIMbaLink: Towards a Sustainable and Feasible Solar Rural

Electrification System

The project makes use of a website that acts as an easily accessible platform

containing in-depth information regarding each individual Solar Home System

(SHS). An SMS system is used to increase the frequency of data gatherings

or to run an intensive 24-hour diagnostic on that system. Software is used to

group the SHS geographically to plan technicians maintenance visits in a way

that maximizes time, materials needed and operational costs. Availability of

GSM serves as a key to reach rural consumers that were previously inaccessible

without high operational costs. Sending an SMS over the GSM network is

currently the best option for retrieving data in rural areas [4]. Figure 3.3,

shows a sketch of the SIMbaLink module used in rural electrification systems

together with the charge controller, PV panels, the connected components to

the system and the rechargeable battery in use.

12

Figure 3.3: Integration of SIMbaLink with the other components of a solar
home system (Source: SIMbaLink. Image by Schelling)

3.5 Alternative technical solutions

3.5.1 Indoor solar energy harvesting for sensor network router

nodes

The development of a unique method to scavenge energy from monocrystaline

solar cells to power wireless router nodes used in indoor applications. The

system’s energy harvesting module consists of solar cells connected in series-

parallel combination to scavenge energy from 34W fluorescent lights. A set

of ultra capacitors were used as the energy storage device. Two router nodes

were used as a router pair at each route point to minimize power consumption.

Test results show that the harvesting circuit which acted as a plug-in to

the router nodes manages energy harvesting and storage, and enables near-

perpetual, harvesting aware operation of the router node. In-hospital WSN

can be used to monitor patient vital sign data from instruments such as elec-

trocardiograms (ECGs), pulse oximeters and blood pressure (BP) monitors.

These units can be interfaced to WSN nodes that are programmed as sensor

nodes. The sensor nodes are required to perform the function of sensing vi-

tal sign data from the patient and are typically required to be ambulatory in

nature.

Therefore, it is more convenient to allow them to run on stable sources

of energy such as batteries. The maximum range of data transmission for such

nodes is approximately 10 meters. Thus additional nodes may be required to

13

pass the data back to the central monitoring location. These router nodes need

to be continuously on so that data can be promptly transferred. Since hospitals

have fluorescent lights in the hallways that are always on, it is advantages to

operate these router nodes by scavenging light energy. This would result in

huge cost savings over time (this arrangement eliminates the need to monitor

and replace batteries) [5].

3.6 Suggested Solution

The suggested solution proposes connecting sensor devices to a board that

can accept multiple sensors. This board will then be further connected to a

device with a Linux operating system on it. The operating system together

with a python script will collect the readings from the sensors and categorize

them into a neat fashion. The latter mentioned board will also be responsible

for broadcasting the data via SMS and Wifi. The Wifi implementation for

uploading the data to an online web portal and the SMS implementation

for sending critical and time dependent messages to a user for monitoring

purposes.

The web portal will act as a monitoring and graphing solution to aid

in visually displaying the data, meeting the user’s requirements. The SMS

implementation will serve for instant notifications of system errors and 4-

hourly categorized system performance measures.

3.7 Conclusion

In this chapter we had a look at the designers view of the problem at hand. We

also listed software and programming tools that are needed to develop the sys-

tem. A few existing solutions and their implementation we highlighted. Since

alternative solutions are almost always available, one was listed to enhance our

knowledge base. Lastly we rounded the chapter off with a suggested solution

for the development/implementation of a remote sensor network to monitor a

solar power system. In the next chapter, we will discuss the specifications of

a user interface for the project.

14

Chapter 4

User Interface Specification

4.1 Introduction

This chapter describes what the user interface is going to do. Its look and

feel will be mentioned as well as how the user interacts with it. Since our

user, SAIAMC, places emphasis on a well designed web interface and mobile

application, the look of a web portal and android application will be discussed.

How our user interacts with the remote sensor system will also be mentioned.

4.2 Interface appearance

4.2.1 Web Portal

The web portal will serve as a platform whereby our client can connect to

via the internet from any personal computer, laptop, smart phone or tablet.

It will have a log in screen for administrative purposes whereby a user name

and password will be needed for security reasons. Figure 4.1 shows the login

screen.

15

16

Figure 4.1: Login screen for accessing the Web Portal

After logging in the following details will be viewable as presented by

Figure 4.2.

Figure 4.2: Remote sensor system details on Web Portal

The information on the web portal is fetched from a database which

is updated every second if an internet connection is available. The database

is fed data over Wifi if the connection is feasible to broadcast the readings

obtained from the remote sensor system.

17

Along with these readings, a state of charge is displayed and updated

every 10 seconds as illustrated by Figure 4.3.

Figure 4.3: Remote sensor system state of charge

Figure 4.4 illustrates a live bar graph of the readings as they are retrieved

from a database every second. These visual readings give an easy on the eye

indication of the system’s performance.

Figure 4.4: Remote sensor system live bar graph

The web portal further supports displays of averages of the last 3 days,

averages of daily luminosity and averages of the sensor readings plotted against

each other. These are graphically depicted by Figures 4.5, 4.6 and 4.7.

18

Figure 4.5: Remote sensor system averages of last 3 days

Figure 4.6: Remote sensor system averages of daily luminosity

19

Figure 4.7: Remote sensor system averages of sensor readings plotted
against each other

Readings from Figures 4.6 and 4.7 are shown from 5 a.m. to 8 p.m. in

increments of one hour.

20

4.2.2 Android Application

The android application will serve to allows users to view the status of their

remote solar powered system. It will also give detailed specifications as to

the battery’s parameters as well as external conditions. Figure 4.8 lists these

details.

Figure 4.8: Remote sensor system details on Android App

As with the web portal, the android application will also fetch data from

a remote database. The application, however, will also allows users to receive

notifications when low performance measures are to be reported. Users can

therefore receive the readings of their solar powered system from any internet

enabled means by simply opening the application on their phones and viewing

the details.

4.3 Conclusion

This chapter detailed the look and feel of the user interfaces for the remote

solar monitoring system. The interfaces’ behaviour was also mentioned and

how users would interact with them. The next chapter will detail the Object

Oriented Analysis (OOA) or High Level Design (HLD).

Chapter 5

Object Oriented Analysis or High

Level Design

5.1 Introduction

This chapter focuses on Object Oriented Analysis or High Level Design of the

remote monitoring system. The OOA will show case a data dictionary defining

what each object/noun represents. The HLD will give a detailed breakdown

of the technical solution involved in each subsystem. It will also show case

detailed interactions between interface subsystems.

5.2 Data dictionary

The following contains objects and their descriptions. These objects were used

during the development of this research project.

Object Description

libusb development libraries A C library that gives applications easy access to
USB devices on many different operating systems.
libusb is an open source project.

Phidget libraries Libraries for a user-friendly system available for
controlling and sensing the environment.

Phidget Python library The Python library for communicating with phid-
gets.

Python A widely used general-purpose, high-level pro-
gramming language. Its design philosophy empha-
sizes code readability and its syntax allows pro-
grammers to express concepts in fewer lines of code
than would be possible in other languages such as
C.

Table 5.1: Objects/Nouns and their descriptions

21

22

5.3 Relationships between objects

Figure 5.1: Input to output

Figure 5.1 gives a clear indication concerning how the battery’s readings

will be processed for display. The DC current and voltage are of impor-

tance to determine the power output. External parameters such as ambient

temperature, relative humidity and luminosity will give an indication of the

environment in which the solar system is operating in. The figure also lists

how the data will be populated in a MySQL database for display purposes.

This database will reside on a remote server and will be used to populate the

web portal. The same database will also be used to send information to the

android application. Note that the language PHP will be used to communicate

with the database and display the data on the web portal. Java/Android like-

syntax will be used to communicate with the database from mobile enabled

android devices.

23

5.4 Full solution components

Figure 5.2: System processing

Figure 5.2 highlights how the system will take in sensor readings and

process those readings via the python programming language. The said lan-

guage makes use of the phidget libraries to complete the processing operations.

The data is then further relayed for output purposes by intermediate steps in

the systems’ cycle.

5.5 Conclusion

This chapter concludes the Object Oriented Analysis and High Level Design.

A data dictionary was defined with objects/nouns of substance to the project.

Objects and the relationships between them were shown as well as solutions

to the system’s full components. The next chapter will delve into the Object

Oriented Design (OOD) or Low Level Design (LLD).

Chapter 6

Object Oriented Design or Low Level

Design

6.1 Introduction

In this chapter a low level design will be applied to the problem. Details will

be given about the data types and functions. Pseudo code will be shown as

well as algorithmic descriptions.

6.2 Low Level data dictionary

The following table contains the system components and concepts that are

going to be used.

Class/Module Attributes

datetime A python module that supplies classes for manipu-
lating dates and times in both simple and complex
ways.

time time provides various time-related functions.
InterfaceKit This class represents a Phidget Interface Kit. All

methods to read and write data to and from an
Interface Kit are implemented in this class.

Table 6.1: Classes/Modules and their attributes

24

25

Table 6.2 lists the methods/functions to be used and their details.

Methods/Functions Details

sleep(t) Suspends execution for the given number of sec-
onds, t. The argument may be a floating point
number to indicate a more precise sleep time.

openPhidget() Open a Phidget with or without a serial number.
Open is pervasive. You can call open on a device
before it is plugged in and keep the device opened
across device dis-connections and re-connections.

getSensorValue() Returns the value of an analog input. The analog
inputs are where analog sensors are attached on
the InterfaceKit 8/8/8. On the Linear and Cir-
cular touch sensor Phidgets, analog input 0 repre-
sents position on the slider. The valid range is 0
- 1000. In the case of a sensor, this value can be
converted to an actual sensor value using the for-
mulas provided in the sensor product manual [6].
Returns the sensor value in (int).

getSensorRawValue() Returns the raw value of an analog input. This is
a more accurate version of getSensorValue. The
valid range is 0 - 4095. Note however that the
analog outputs on the InterfaceKit 8/8/8 are only
10-bit values and this value represents an oversam-
pling to 12-bit. Returns the sensor value in (int).

closePhidget() Closes this Phidget. This will shut down all
threads dealing with this Phidget and you won’t
receive any more events.

Table 6.2: Methods/Functions and their details

26

6.3 Low Level Design

On the low level of design, sensing with the Phidgets will be depicted by Figure

6.1 since it represents the first part of the project.

Figure 6.1: Sensing state diagram

The above figure can also be expressed algorithmically. See below.

Algorithm 6.1 Sense battery and environment readings

import or load the required classes or modules for usage
open the Phidget InterfaceKit
sleep - give the Phidget InterfaceKit time to open
while true do

retrieve the sensors values
apply the necessary formulas to each sensors’ values
retrieve and display the results
repeat the procedure

end while
close the Phidget InterfaceKit

6.4 Conclusion

This chapter examined the project from an Object Oriented Design (OOD)

and a High Level Design (HLD). The most interesting details revolve around

the state diagram shown and its accompanying pseudo code/algorithmic de-

scription. The next chapter will focus on the code documentation.

Chapter 7

Documentation

7.1 Introduction

This chapter will feature detailed documentation relating to the project. The

projects construction will be shown followed by documentation of the code

that runs the actual construction.

7.2 Project Construction

The following figure summarizes the system components that are going to be

implemented.

Figure 7.1: Remote Sensor System / Network

27

28

Figure 7.1 depicts 5 components of the project. Sensing, communica-

tion, storage, processing/data mining and display. Phidget sensors will be

responsible for collecting voltage and current supplied by the battery/battery

bank. In this setup, a 12v 7.2Ah lead acid battery has been used. The analog

sensors then communicate with the phidget interface kit that is responsible

for processing the readings from the sensors. The kit passes those readings on

to a script running on a raspberry pi that handles the readings by applying

the necessary calibration formulas. The pi also serves as a gateway to pass the

readings collected to cloud storage for processing, data mining and display on

Android devices and for viewing on various web browsers via a web portal.

A more schematic layout or circuit diagram is depicted by figure 7.2.

Figure 7.2: Circuit diagram / Schematic / Layout of prototype

29

The Mini Solar Panel with battery pack could be a Pocket Power. The

Pocket Power has the following features and benefits:

• USB output

• Powerful with long operation

time

• Portable and convenient

• High efficiency of power con-

summation

• Electricity-saving function

• User friendly

• Long cycle life

• Rapid recharge

• Environmental friendliness and

Economic Efficiency

• Output capacity : 18.5Wh

(5000mA/h)

• USB output : 5V, 1.5A

• Charging time : about 8.5 hours

• Input : 5V, 500mA

• Max output current : 1.5A

• Dimensions : 125x79x14mm

• Weight : about 170g

Figure 7.2 shows a Pocket Power mini solar panel with built-in battery

pack for powering the Raspberry Pi, Phidget Interface Kit and Phidget Sen-

sors.

Figure 7.3: Pocket Power

30

7.3 Sensors and their Metrics

Of importance to the development of the remote sensor network, is the accu-

racy with which the sensors used will be able to capture the data needed. The

following figures will detail each sensor used in the project along with their

metrics.

7.3.1 Precision Voltage Sensor

Figure 7.4: Precision Voltage Sensor

The voltage sensor measures DC voltages from -30 to +30 Volts with a

typical error of ±100mVolts. The Precision Voltage Sensor is not ratiometric.

7.3.2 30 Amp Current Sensor AC/DC

Figure 7.5: 30 Amp Current Sensor AC/DC

31

The current sensor measures alternating current up to 30 Amps and

direct current from -30 Amps to +30 Amps. Dual outputs allow the user to

measure both the AC and DC components of complex waveforms separately.

The Measurement Error Max for this sensor is 5%.

7.3.3 Humidity/Temperature Sensor

Figure 7.6: Humidity/Temperature Sensor

The humidity sensor measures relative humidity from 10% to 95% with a

typical error of±2%RH at 55% RH. The ambient temperature sensor measures

ambient temperature in the range of −30◦C to +80◦C with a typical error of

±0.75◦C in the 0◦C to 80◦C range.

The temperature sensor component is rated at −40◦C to +100◦C, but

the other components on the board, the connector and the cable are rated

at −30◦C to +80◦C. In a fast prototyping environment, the temperature

sensor board can be pushed to the ratings of the sensor component, but you

should use the lower temperature ratings if you plan to use it in a commercial

application. It is a ratiometric sensor with a Temperature Typical Error (At

25◦C). The ambient temperature Error Max is ±2◦C.

7.3.4 Light Sensor 70 000 lux : Luminosity sensor

Figure 7.7 indicates the luminosity sensor that can measure ambient light up

to 70 kilolux (roughly equivalent to the brightness of direct sunlight). Each

sensor has been individually calibrated and a label has been applied to the back

of the board with a calibration value. This value can be used in calculations

32

Figure 7.7: Light Sensor 70 000 lux: Luminosity sensor

to increase measurement accuracy. The sensor’s output is logarithmic, so it

will be more accurate at low light levels.

7.3.5 Phidget Interface Kit 8/8/8

Figure 7.8: Phidget Interface Kit 8/8/8

Figure 7.8 shows the Phidget Interface Kit 8/8/8 which is responsible

for processing the readings obtained from analog and digital inputs. Sampling

rates can be set at 1ms, 2ms, 4ms, 8ms and multiples of 8ms up to 1000ms.

The kit provides:

• 8 Analog Inputs

• 8 Digital Inputs

• 8 Digital Outputs

The kit operates between a minimum temperature of 0◦C and a maxi-

mum temperature of 70◦C.

33

The Analog Inputs are used to measure continuous quantities, such as

temperature, humidity, position, pressure, etc. Phidgets offer a wide variety

of sensors that can be plugged directly into the board using the cable included

with the sensor. The Analog Input can measure a voltage between 0V and

5V. The analog measurement is represented in the software as a value between

0 and 1000, so a sensor value of 1 unit represents a voltage of approximately

5mV.

The Digital Inputs can be used to convey the state of devices such as

push buttons, limit switches, relays and logic levels. The Digital Outputs

can be used to drive LEDs, solid state relays (e.g. 3052 SSR Relay Board),

transistors; in fact, anything that will accept a CMOS signal. The kit comes

packaged with a 6-foot USB cable, a Getting Started Manual, a mounting

hardware kit and a sheet of labels. It has outside dimensions: 3.20” x 2.10”

and mounting holes: 2.20” x 1.25”.

USB Voltage Min 4.6 V DC
USB Voltage Max 5.5 V DC
Current Consumption Min 13 mA
Current Consumption Max 500 mA
Available External Circuit 487 mA
Recommended Wire Size 16 - 26 AWG
USB Speed Full Speed

Table 7.1: Kit specifications/attributes

Table 7.1 details the specifications of the kit and are helpful in deter-

mining the power source needed to power the kit and the sensors connected

to it.

34

7.4 Voltage Sensor Setup

Figure 7.9: Voltage sensor in parallel

The voltage sensor measures the differential voltage across the load.

Figure 7.10: Voltage sensor schematics

Figures 7.9 and 7.10 illustrate that the voltage sensor in use has to be

connected in parallel on the circuit. The voltage source is represented by a

battery symbol and the load is represented by a light bulb or a schematic

resistor symbol.

35

7.5 Current Sensor Setup

Figure 7.11: Current sensor connected in series

The current flowing through the battery to the load is measured through

the current sensor.

Figure 7.12: Current sensor schematics

Figures 7.11 and 7.12 show that the current sensor should be wired in

series with the circuit under test.

36

7.6 Raspberry Pi

Figure 7.13: Raspberry Pi Model B

Figure 7.13 shows a Raspberry Pi. It is a credit-card sized computer

that can plug into a TV and be equipped with a keyboard and mouse. It is

a capable little computer which can be used in electronics projects and for

desktop projects such as spreadsheets, word-processing and even games. It

also plays high definition video. For the purposes of this project, the device

will serve as a gateway to process the actual calibrations of sensor readings

and to relay those readings on to a MySQL database for storage.

It has the following specifications [7]:

• Memory : 512 MB SDRAM

• Ethernet : onboard 10/100 Eth-

ernet

• USB 2.0 : Dual USB connector

• Video Output : HDMI / Com-

posite RCA

• Audio Output : 3.5mm jack,

HDMI

• Operating System : Linux

• Dimensions : 8.6cm x 5.4cm x

1.7cm

• Onboard Storage : SD, MMC,

SDIO card slot

37

The Raspberry Pi in this implementation houses a 16GB SD card and has

been loaded with the Raspbian operating system. It is a free operating system

based on Debian and optimized for the Raspberry Pi hardware. Raspbian

provides more than just a pure OS. It comes with over 35,000 packages, a pre-

compiled software bundle in a nice format for easy installation on a Raspberry

Pi. The device will make use of a Wi-Pi dongle for relaying data over WiFi.

Another option is to fit it with a USB GSM Modem for relaying data over 3G

/ 2G / SMS. Thus, we can say that the Pi will serve as a gateway.

7.7 Raspbian installation

The steps below detail how to install Raspbian on a SD card via Linux (I used

Ubuntu).

Please note that the use of the dd tool can overwrite any partition of

your machine. If you specify the wrong device in the instructions below you

could delete your primary Linux partition. Please be careful.

• Run df -h to see what devices are currently mounted.

• If your computer has a slot for SD cards, insert the card. If not, insert the

card into a SD card reader, then connect the reader to your computer.

• Run df -h again. The new device that has appeared is your SD card.

The left column gives the device name of your SD card; it will be listed

as something like /dev/mmcblk0p1 or /dev/sdd1. The last part

(p1 or 1 respectively) is the partition number but you want to write

to the whole SD card, not just one partition. Therefore you need to

remove that part from the name (getting, for example, /dev/mmcblk0

or /dev/sdd) as the device for the whole SD card. Note that the SD

card can show up more than once in the output of df; it will do this

if you have previously written a Raspberry Pi image to this SD card,

because the Raspberry Pi SD images have more than one partition.

• Now that you’ve noted what the device name is, you need to unmount

it so that files can’t be read or written to the SD card while you are

copying over the SD image.

38

• Run umount /dev/sdd1, replacing sdd1 with whatever your SD card’s

device name is (including the partition number).

• If your SD card shows up more than once in the output of df due to

having multiple partitions on the SD card, you should unmount all of

these partitions.

• In the terminal, write the image to the card with the command below,

making sure you replace the input file if= argument with the path to

your .img file, and the /dev/sdd in the output file of= argument with

the right device name. This is very important, as you will lose all data

on the hard drive if you provide the wrong device name. Make sure

the device name is the name of the whole SD card as described above,

not just a partition of it; for example sdd, not sdds1 or sddp1; or

mmcblk0, not mmcblk0p1.

dd bs=4M if=2014-06-20-wheezy-raspbian.img of=/dev/sdd

• Please note that block size set to 4M will work most of the time; if not,

please try 1M, although this will take considerably longer.

• Also note that if you are not logged in as root you will need to prefix

this with sudo.

• The dd command does not give any information of its progress and so

may appear to have frozen; it could take more than five minutes to finish

writing to the card. If your card reader has an LED it may blink during

the write process. To see the progress of the copy operation you can run

pkill -USR1 -n -x dd in another terminal, prefixed with sudo if you

are not logged in as root. The progress will be displayed in the original

window and not the window with the pkill command; it may not display

immediately, due to buffering.

• Instead of dd you can use dcfldd; it will give a progress report about

how much has been written.

• You can check what’s written to the SD card by dd-ing from the card

back to another image on your hard disk, and then running diff (or

md5sum) on those two images. There should be no difference.

39

• Run sync; this will ensure the write cache is flushed and that it is safe

to unmount your SD card.

• Remove the SD card from the card reader [8].

7.8 State of Charge

A sealed lead-acid battery of 12 volt provides different voltages depending on

its state of charge. When the battery is fully charged in an open circuit, the

output voltage is about 12.8 V. The output voltage lowers quickly to 12.6

V when loads are attached. As the battery is providing constant current

during operation, the battery voltage reduces linearly from 12.6 V to 11.6 V

depending on the state of charge. A sealed lead-acid battery provides 95% of

its energy within this voltage range. If we make the broad assumption that a

fully loaded battery has a voltage of 12.6 V when full and 11.6 V when empty,

we can estimate that a battery has discharged 70% when it reaches a voltage

of 11.9 V. These values are only a rough approximation since they depend on

the life and quality of the battery, the temperature, etc [9].

State of Charge 12 V Battery Voltage Volts per Cell
100% 12.7 2.12
90% 12.5 2.08
80% 12.42 2.07
70% 12.32 2.05
60% 12.2 2.03
50% 12.06 2.01
40% 11.9 1.98
30% 11.75 1.96
20% 11.58 1.93
10% 11.31 1.89
0% 10.5 1.75

Table 7.2: State of Charge of 12V battery

According to Table 7.2 and keeping in consideration that a truck battery

should not be discharged more than 20% to 30%, we can determine that

the useful capacity of a truck 170Ah battery is 34Ah (20%) to 51Ah (30%).

Using the same table, an observation can be made to prevent a battery from

discharging below 12.3V.

40

7.9 Code Documentation

The code will be documented in a fashion that illustrates the sensing and

communication aspects of the project. Before we dive into the code, please

note that sensor calibration formulas are used to translate sensor values (Sen-

sorValue) into readings that fit our understanding. For maximum accuracy,

the RawSensorValue property can be used. Each sensor calibration is listed

below:

Precision Voltage Sensor

• Voltage (in volts) = (
(SensorV alue

200
)−2.5

0.0681
)

• Substitute (SensorValue) with (RawSensorValue / 4.095) [10]

30 Amp Current Sensor AC / DC

• AC RMS Amps = SensorValue x 0.04204

• DC Amps = (SensorV alue
13.2

) - 37.8787

• Substitute (SensorValue) with (RawSensorV alue
4.095

) for maximum accuracy

Humidity / Temperature Sensor

• RH (%) = (SensorValue x 0.1906) - 40.2

• Temperature (C) = (SensorValue x 0.22222) - 61.11

Light Sensor 70 000 lux : Luminosity sensor

• Luminosity (lux) = em∗SensorV alue+b, where m = 0.02394 and b = -1.1843

• ’m’ and ’b’ are calibration values found on the label on the underside

of the 1143. If for some reason you cannot use the calibration values

that come with the sensor, you can use the generalized values of m =

0.02385 and b = -0.56905 to get a rough approximation.

41

7.9.1 Gathering data from sensors

As mentioned before, every sensor will have its own calibration formula for

computing the sensor’s value into human readable form. Please note that each

sensor value is retrieved from a different port on the phidget interface kit. The

luminosity sensor is plugged into port 0, the ambient temperature sensor into

port 1, the relative humidity sensor into port 2, the precision voltage sensor

into port 3 and the current sensor into port 4. The code below details the

retrieval of sensor values and the calibrations applied.

get Luminosity − Wide Range Light Sensor P/N: 1143 0

Luminosity (lux) = e ∗∗(m∗Sensor Value + b)

lum = f l o a t (round (e ∗∗(m ∗ (i n t e r f a c eK i t . getSensorValue (0)) + b) , 2))

get Ambient Temperature in degree s Ce l s i u s − P/N: 1125

Temperature (C) = (Sensor Value x 0 .22222) − 61 .11

temp = f l o a t (round ((i n t e r f a c eK i t . getSensorValue (1) ∗ 0 .22222) − 61 .11 , 2))

get Re la t i v e Humidity − P/N: 1125

RH (%) = (Sensor Value x 0 .1906) − 40 .2

hum = f l o a t (round ((i n t e r f a c eK i t . getSensorValue (2) ∗ 0 .1906) − 40 . 2 , 2))

get the p r e c i s e vo l t age − Pre c i s i on Voltage Sensor P/N: 1135

D i f f e r e n t i a l vo l tage = (((Sensor Value /200) − 2 . 5) / 0 .0681)

where V d i f f i s de f i ned as V po s i t i v e − V negat ive

#vo l t = f l o a t (round ((((i n t e r f a c eK i t . getSensorValue (3) / 200) − 2 . 5)

/ 0 . 0681) , 3))

v = f l o a t (i n t e r f a c eK i t . getSensorRawValue (3)) / 4 .095 # maximum accuracy

vo l t = round ((((v / 200) − 2 . 5) / 0 . 0681) , 3)

get the cur rent − 30 Amp Current Sensor P/N: 1122 0

DC Current (A) = (Sensor Value / 13 . 2) − 37.8787

c = i n t e r f a c eK i t . getSensorValue (4)

cur = round (((c / 13 . 2) − 37 .8787) , 3)

42

Calcu la te the Power

Power = Voltage x Current

power = vo l t ∗ cur

7.9.2 Sensing with the Raspberry Pi

The raspberry pi runs the sensing python script via a crontab/cronjob. Cron is

a system daemon that is used to execute tasks in the background at designated

times. A crontab is a simple text file with a list of commands meant to be

run at specified times. It can be edited with a command-line utility. These

commands and their run times are controlled by the cron daemon, which

executes them in the system’s background. Cronjobs run regardless of whether

the user who created them are logged into the system [11].

The sensing python script pi wifi 1min.py is run with the following cron-

job:

m h dom mon dow command

∗ ∗ ∗ ∗ ∗ sudo python /home/ pi / p i w i f i 1m in . py

Cron runs the script every minute of the hour for every hour of the day

for every day of the month for every month of the year for every day of the

week.

7.9.3 Android function to retrieve readings from MySQL database

The following Android function is responsible for displaying the sensor read-

ings which are sent to the MySQL database. The same readings are displayed

on the web portal.

pub l i c void getData (){

St r ing r e s u l t = ”” ;

InputStream i s r = nu l l ;

t ry {

HttpCl ient h t t p c l i e n t = new Defau l tHttpCl i ent () ;

HttpPost httppost = new HttpPost (” http ://www. cs . uwc . ac . za /˜ zerasmus/

getLatestReadings . php ”) ;

HttpResponse response = h t t p c l i e n t . execute (httppost) ;

HttpEntity en t i t y = response . ge tEnt i ty () ;

43

i s r = en t i t y . getContent () ;

}

catch (Exception e){

Log . e (” l o g t a g ” , ”Error in http connect ion ” + e . t oS t r i ng ()) ;

r e su l tView . setText (”Couldn ’ t connect to database ”) ;

}

// convert re sponse to s t r i n g

try {

BufferedReader reader = new BufferedReader (new InputStreamReader (

i s r , ” i so −8859−1”) , 8) ;

//BufferedReader reader = new BufferedReader (new InputStreamReader (

i s r , ”UTF−8”)) ;

S t r i ngBu i l d e r sb = new St r ingBu i l d e r () ;

S t r ing l i n e = nu l l ;

whi l e ((l i n e = reader . readLine ()) != nu l l){

sb . append (l i n e + ”\n ”) ;

}

i s r . c l o s e () ;

r e s u l t = sb . t oS t r i ng () ;

}

catch (Exception e){

Log . e (” l o g t a g ” , ”Error conver t ing r e s u l t ” + e . t oS t r i ng ()) ;

}

// parse j son data

try {

St r ing s = ”” ;

JSONArray jArray = new JSONArray(r e s u l t) ;

f o r (i n t i = 0 ; i < jArray . l ength () ; i++){

JSONObject j son = jArray . getJSONObject (i) ;

s = s +

”Date / Time : ” + j son . g e tS t r i ng (” date t ime ”) + ”\n” +

”Ambient Temp : ” + j son . g e tS t r i ng (” ambient temp ”) + ” \u2103\n” +

”Re la t i v e Humidity : ” + j son . g e tS t r i ng (” rel hum ”) + ” %\n” +

44

”Luminosity : ” + j son . g e tS t r i ng (” lum”) + ” Lux\n” +

”DC Voltage : ” + j son . g e tS t r i ng (” d c vo l t ”) + ” Volt (s)\n” +

”DC Current : ” + j son . g e tS t r i ng (” dc cur ”) + ” Amp(s)\n” +

”Power : ” + j son . g e tS t r i ng (” power ”) + ” Watt(s) ” ;

}

//System . out . p r i n t l n (s) ;

r e su l tView . setText (s) ;

}

catch (Exception e){

// TODO: handle except ion

Log . e (” l o g t a g ” , ”Error Pars ing Data ” + e . t oS t r i ng ()) ;

}

}

7.9.4 Android Application Execution

Upon launching the android application, it opens up and initiates a connection

to the database. This initiation is handled at certain time frames. Essentially,

timing is handled via android.os.Handler;. The following handlers have been

utilized:

• Sensor readings handler

TimeUnit.SECONDS.sleep(1)

• State of Charge handler

TimeUnit.SECONDS.sleep(10)

The sensor readings are refreshed every second and the state of charge

(SOC) is refreshed every ten seconds, since the SOC value does not change

frequently.

HttpPost is responsible for making a POST Request to the server for

the readings. The response from the server is converted to a string which

contains the data. The data is parsed to extract the sought after readings.

The application then displays these readings on its view.

45

7.10 Conclusion

This chapter examined the project’s documentation, namely the project’s con-

struction, sensors and their metrics, voltage and current sensor setups, the

credit card sized computer responsible for running the calibrations, Raspbian

installation, state of charge and the code documentation. The most interesting

details revolve around sensing and communication and the circuit schematics

and setup. The next chapter will focus on testing.

Chapter 8

Testing and Results

8.1 Introduction

This chapter will feature detailed testing documentation relating to the project.

Testing results will be illustrated and discussed.

8.2 Testing procedure

Throughout the project’s development, an incremental approach was used.

Thus before adding a component to the project, testing was implemented to

ensure that component was working and merged with the rest of the project

successfully. Figure 8.1 illustrates the approach mentioned.

Figure 8.1: Incremental approach

8.3 White-Box testing - Static Testing

Throughout development increments, checks were performed for code and al-

gorithm sanity. The code of the sensing script, web portal, android application

and SMS notification system was manually reviewed to find errors. In isola-

tion, these walkthroughs, inspections and reviews revealed bugs that were easy

to fix. An example is a calibration error on the sensing script that produced

a slightly higher voltage reading.

46

47

8.4 Stress Testing

Stress testing involved seeing whether the database could handle queries sent

to it every second as per the client’s specifications. This involved readings sent

to the database and pulled from the database every second. Both scenarios

performed successfully. The android application was also tested in this manner

and did not hang or produce any performance lags. It relayed per second

updates of readings to its view as was desired.

8.5 Performance Testing

The Raspberry Pi yielded a successful sensing and relaying operation from

boot-up. The Raspberry Pi could boot-up, connect to a wifi network and

start broadcasting readings under 1 min. Network performance was ultimately

a deciding factor towards performance testing as a poorly performing wifi

network would lead the Raspberry Pi to miss interval broadcasts as it had to

reconnect to other available networks.

8.6 Testing results

8.6.1 Environment - Lab vs outside

Parameters Lab Outside

Ambient Temperature (◦C) 23.33 15.33
Relative Humidity (%) 35.28 53.77
Luminosity (lux) 232.08 1.11
DC Volt(s) 12.685 14.478
DC Current (I) -0.227 0.076
Power (W) -2.879495 1.100328

Table 8.1: Testing - Environment

The readings of Table 8.1 were taken on 16 October 2014. Lab readings

were taken at 21:05:44 and outside readings at 20:46:38. During Lab testing

the Raspberry Pi was powered via AC power, thus the negative current reading

is representative of no load on the system. Outside the lab reveals a current

reading of 0.076 where the Raspberry Pi drew power from the system. The

voltage differences are a key component in determining the effectiveness of

the voltage sensor. At this stage, it is unknown why the battery’s voltage

48

reading differs immensely as the Raspberry Pi is not directly connected to the

precision voltage sensor. This could indicate a voltage leakage.

Figure 8.2 graphically illustrates a voltage difference taken on 22 October

2014. From the figure it can be seen that leaching presents a higher voltage

reading than AC power does.

Figure 8.2: Battery leaching vs AC Power

8.6.2 Environment - Phidget Sensor vs Lab Thermometer vs Air-

conditioner Remote

Parameters Phidget Sensor Lab Thermometer Aircon. Remote

Ambient Temperature (◦C) 21.78 21.70 22.00

Table 8.2: Testing - Lab Temperature

The temperature readings of Table 8.2 were measured against twin air-

conditioner temperatures set to 22 degree Celsius. The table highlights how

the lab thermometer and phidget ambient temperature sensor were able to

measure the lab’s temperature. The air-conditioners were allowed to blow for

15 min. before readings were taken.

49

8.6.3 Phidget Sensors vs Accuweather

Figure 8.3: Ambient Temperature (◦C) and Relative Humidity (%)

The readings of Figure 8.3 were taken on 19 October 2014 at 15:21:13.

The readings from AccuWeather were computed for 15:00 in the Bellville,

Cape Town area.

8.6.4 Panel voltage - Lab vs outside

Parameter Lab Outside

Panel Voltage 12.71 - 14.67 V 20.6 - 21.0 V

Table 8.3: Testing - Panel Voltage

The readings of Table 8.3 were taken on 21 August 2014 at 14:00. The

main emphasis of the above table is to illustrate the power generation capa-

bilities of the panel in use. It is also able to generate a voltage indoors by

scavenging from secondary power sources (lab lighting).

8.6.5 Phidget Sensors vs Multimeter

Parameters Phidget Sensor Multimeter

DC Volt(s) 11.036 12.07
DC Current 0.152 0.440
Power 1.677472 5.3108

Table 8.4: Testing - Phidget Sensors vs Multimeter

Table 8.4 presents voltage and current readings of the phidget sensors

versus a multimeter. As per the results, it can be seen that the phidget

50

sensors sense low values for voltage as well as current. The phidget voltage

sensor correlates with the charge controller, indicating that the battery is

empty with a low voltage disconnection prewarning and that loads are still

on. The load is a cellphone which is being charged by the system.

8.6.6 Charge Controller Terminals

Parameters Date Time Panel Battery Load

DC Volt(s) at 226.59 lux 2 Oct. ’14 14:15 12.99 12.99 12.99
DC Volt(s) at 232.08 lux 16 Oct. ’14 21:05:44 12.68 12.68 12.68
DC Volt(s) at 1.04 lux 16 Oct. ’14 21:09:44 6.89 12.76 12.76

Table 8.5: Testing - Charge Controller Terminals (LAB)

Parameters Date Time Panel Battery Load

DC Volt(s) at 1.09 lux 16 Oct. ’14 20:46:38 6.88 12.06 12.06
DC Volt(s) at 4853.52 lux 19 Oct. ’14 15:19:13 12.07 12.06 12.07

Table 8.6: Testing - Charge Controller Terminals (Outside)

Tables 8.5 and 8.6 are included to illustrate voltages across the three

terminals of the charge controller, namely, the panel terminal (left), battery

terminal (center) and the load terminal (right). The maximum terminal volt-

age determined during lab testing revealed a voltage reading of 12.99 volts

across all three terminals. The lowest panel voltage terminal reading was ob-

tained at 1.04 lux when the lab lights had been turned off at 21:09:44. At

a similar lux reading outside, an almost equal panel terminal voltage was

detected at 6.88 volts at 20:46:38.

51

8.6.7 SMS Notification

Voltage Range SOC (Approx.)

11.58 ≤ voltage < 11.75 20%
11.31 ≤ voltage < 11.58 10%
10.50 ≤ voltage < 11.31 0%

Table 8.7: Testing - Voltage ranges below accepted thresholds

Field test - A voltage of 11.018 V resulted in the SMS notification as

illustrated by Figure 8.4 below.

Figure 8.4: SMS Notification sent out for an approximal 0% SOC reading

A cronjob upon the server housing the web portal code would initiate

a SOC check at a preset interval. When a low SOC is detected based on the

voltage ranges of Table 8.7, a SMS will be sent out immediately. Testing re-

veals the delivery of a SMS within a three second window from SOC detection

to notification. This result meets the user requirements as it serves as an

effective means of battery SOC notification on a remote basis.

52

8.6.8 Luminosity results

Figure 8.5: Average lab luminosity readings on 2 Oct 2014

Figure 8.5 illustrates the average hourly lab luminosity readings from

11am to 6pm on 2 October 2014. From the figure it can be seen that from the

highest (3pm) to the lowest (2pm) reading, there is a difference of 8.68 lux

during the time frame of 8 hours. Being able to track the light levels in the

lab throughout a 24 hour day can give an indication of their energy patterns.

53

8.6.9 Averages of last 2 days

Figure 8.6: Averages of last 2 days

Figure 8.6 illustrates the averages of the last 2 days recorded by the

system. These averages are compared against one another to gain an under-

standing on how a day relates to the one before it.

8.7 Conclusion

This chapter examined the project’s testing documentation and the results

gathered. The results include differences and similarities between a lab envi-

ronment as well as a location outside the lab. The next chapter will focus on

the user guide.

Chapter 9

User Guide

9.1 Introduction

This chapter will feature a detailed user guide relating to the project. It will

mainly focus on setting up the sensors, Phidget Interface Kit and Raspberry

Pi and also give brief instructions for using the web portal and Android ap-

plication.

9.2 Sensors and Phidget Interface Kit

The following sensors have to connected to the Phidget Interface Kit in the

specified ports:

• Luminosity / Light Sensor 70 000 lux 0

• Temperature 1

• Humidity 2

• Precision Voltage Sensor 3

• 30 Amp Current Current Sensor AC/DC 4

9.3 Raspberry Pi

House cleaning:

• sudo apt-get update

• sudo apt-get upgrade

54

55

Software tools / packages to install before setting up the sensor system:

• sudo apt-get install vim

• sudo apt-get install vim-gtk

• sudo apt-get install chromium

The following ports are used/connected to by these devices:

• USB0 Phidget Interface Kit

• USB1 Wi-Pi / GSM Modem

See pages 37-39 for the Raspbian installation.

Also make sure the following libraries are installed on a Raspberry Pi

before loading and running the sensing script.

• libusb-1.0-0-dev

• Phidget libraries - libphidget.tar.gz

• Phidget python library

Place pi wifi 1min.py in the directory /home/pi/. Set a cronjob and

direct it with the following parameters:

m h dom mon dow command

∗ ∗ ∗ ∗ ∗ sudo python /home/ pi / p i w i f i 1m in . py

9.4 Web Portal

The web portal will serve as the main means of observing the remote sensor

system. Upon login, a user will be directed to the home page. This page will

illustrate a table of sensor readings and the date and time they were logged

with the server. Below this table is a SOC calculation that is computed from

the battery’s voltage reading. Below the SOC div is a live graph that models

the present readings that are being sent from the Raspberry Pi to the database.

56

The links on the left side of the page are detailed below:

• Logout - Exiting / Signing off from the web portal

• Averages - Displays averages of the last 3 days textually and graphically

• Luminosity - Daily Luminosity / Averages of Hourly luminosity readings

• Readings - Averages of Hourly Readings

All readings displayed are from 5am in the morning to 20pm in the

evening.

9.5 Android Application

Upon clicking on the Android application, it opens up and connects to the

database if an internet connection is present. If no connection is present, an

error message will be displayed. Assuming internet is available, the readings

will be requested from the server and displayed by the application. Please

note that the rate that the sensor readings are refreshed are different from the

SOC. The sensor readings are refreshed every second, where as the SOC is

refreshed every ten seconds. Upon wanting to exit the application, a user will

just need to press the Android back button.

9.6 Conclusion

This chapter examined the project’s user guide. It illustrated how to use the

sensors, phidget interface kit and raspberry pi. The next chapter will conclude

the project and highlight possible future work.

Chapter 10

Conclusion

The entire system can be improved or edited and compared to the current

prototype by using different sensing equipment and gateway devices. Of great

interest is the newly development Phidget Single Board Computer (SBC) that

would replace the Phidget Interface Kit and Raspberry Pi as it would serve

the purposes of both devices. The Android application can be expanded to

cater for graphing of vital system readings. A different graphing library can be

implemented to make the web portal appear more feature rich and appealing

on the eye.

Packaging of the sensors, interface kit and Raspberry Pi would be impor-

tant before deploying the hardware side of the system for outside usage. This

would also prevent rust, corrosion and damage from environmental factors.

Situation recognition using machine learning techniques or statistical analysis

methods will need to be run on a large dataset gathered from running multiple

sensor systems at various locations. This would lead to prediction capabilities.

The project successively partook in the development of a remote sensor

network (RSNET) which can continuously acquire energy yields and perfor-

mance measures of renewable energy solar power systems. Based on the mo-

tivation that sensor technology is still a relatively new field, the project was

able to research and construct a means for engineers to avoid traveling to far

off locations to gather data, but rather receive the readings by means of a re-

mote monitoring system. Engineers are able to receive the readings by means

of a low cost solution and the sensing devices could be deployed at multiple

locations.

57

Bibliography

[1] Edgewall Software, “libusb,” 2014. http://www.libusb.org/.

[2] Anonymous, “The phidgets manual,” 2014. http://rs.cs.iastate.

edu/smarthome/documents/ManualsandTutorials/Phidgets/

PhidgetsManual.pdf.

[3] M. Nkoloma, M. Zennaro, and A. Bagula, “SM2 : Solar monitoring system

in malawi,” 2011 ITU-T Kaleidoscope Academic Conference,

978-92-61-13651-2/CFP1138-E-CDR, 2011.

[4] N. Schelling, M. J. Hasson, S. L. Huong, A. Nevarez, P. W.-C. Lu,

M. Tierney, L. Subramanian, and H. Schützeichel, “Simbalink: Towards

a sustainable and feasible solar rural electrification system,” ICTD ’10

Proceedings of the 4th ACM/IEEE International Conference on Informa-

tion and Communication Technologies and Development Article No. 42,

2010, ISBN: 978-1-4503-0787-1 doi>10.1145/2369220.2369260.

[5] A. Hande, T. Polk, W. Walker, and D. Bhatia, “Indoor solar energy

harvesting for sensor network router nodes,” (Erik Jonsson School of En-

gineering and Computer Science, University of Texas at Dallas, P.O. Box

830688, EC33, Richardson, TX 75083, USA), Elsevier B.V., Micropro-

cess. Microsys. (2007), doi:10.1016/j.micpro.2007.02.006.

[6] A. Stelmack, “Python:module phidgets.devices.interfacekit,” May 17,

2010. http://www.phidgets.com/documentation/web/PythonDoc/

Phidgets.Devices.InterfaceKit.html.

[7] Anonymous, “Comparison between model a and model b,” 2014. http:

//downloads.element14.com/raspberryPi1.html.

[8] Anonymous, “Rpi easy sd card setup,” 2014. http://elinux.org/RPi_

Easy_SD_Card_Setup.

[9] R. Flickenger, C. Aichele, S. Büttrich, and L. M. Drewett, “Wireless

58

http://www.libusb.org/
http://rs.cs.iastate.edu/smarthome/documents/Manuals and Tutorials/Phidgets/PhidgetsManual.pdf
http://rs.cs.iastate.edu/smarthome/documents/Manuals and Tutorials/Phidgets/PhidgetsManual.pdf
http://rs.cs.iastate.edu/smarthome/documents/Manuals and Tutorials/Phidgets/PhidgetsManual.pdf
http://www.phidgets.com/documentation/web/PythonDoc/Phidgets.Devices.InterfaceKit.html
http://www.phidgets.com/documentation/web/PythonDoc/Phidgets.Devices.InterfaceKit.html
http://downloads.element14.com/raspberryPi1.html
http://downloads.element14.com/raspberryPi1.html
http://elinux.org/RPi_Easy_SD_Card_Setup
http://elinux.org/RPi_Easy_SD_Card_Setup

59

networking in the developing world second edition,” Hacker Friendly LLC,

December 2007.

[10] Anonymous, “1135 user guide,” 2014. http://www.phidgets.com/docs/

1135_User_Guide.

[11] d-admin a, “Cronhowto,” 2014. https://help.ubuntu.com/community/

CronHowto.

http://www.phidgets.com/docs/1135_User_Guide
http://www.phidgets.com/docs/1135_User_Guide
https://help.ubuntu.com/community/CronHowto
https://help.ubuntu.com/community/CronHowto

	Declaration
	Abstract
	Key words
	Acknowledgements
	List of Figures
	Glossary
	Introduction
	Motivation
	Contribution and Outline

	User Requirements
	Introduction
	User's view of the problem
	The storage of renewable energy
	Measuring readings
	Technology used to take measurements
	Traffic

	Description of the problem
	The storage of renewable energy
	Measuring readings
	Technology used to take measurements
	Traffic

	Expectations from a Software Solution
	Interaction with Users
	Measuring readings and Technology used
	Traffic

	Conclusion

	Requirements Analysis
	Introduction
	Designer's interpretation of the problem
	Software and programming tools needed to develop this system
	Existing solutions
	An evaluation of the Solar Monitoring System in Malawi
	SIMbaLink: Towards a Sustainable and Feasible Solar Rural Electrification System

	Alternative technical solutions
	Indoor solar energy harvesting for sensor network router nodes

	Suggested Solution
	Conclusion

	User Interface Specification
	Introduction
	Interface appearance
	Web Portal
	Android Application

	Conclusion

	Object Oriented Analysis or High Level Design
	Introduction
	Data dictionary
	Relationships between objects
	Full solution components
	Conclusion

	Object Oriented Design or Low Level Design
	Introduction
	Low Level data dictionary
	Low Level Design
	Conclusion

	Documentation
	Introduction
	Project Construction
	Sensors and their Metrics
	Precision Voltage Sensor
	30 Amp Current Sensor AC/DC
	Humidity/Temperature Sensor
	Light Sensor 70 000 lux : Luminosity sensor
	Phidget Interface Kit 8/8/8

	Voltage Sensor Setup
	Current Sensor Setup
	Raspberry Pi
	Raspbian installation
	State of Charge
	Code Documentation
	Gathering data from sensors
	Sensing with the Raspberry Pi
	Android function to retrieve readings from MySQL database
	Android Application Execution

	Conclusion

	Testing and Results
	Introduction
	Testing procedure
	White-Box testing - Static Testing
	Stress Testing
	Performance Testing
	Testing results
	Environment - Lab vs outside
	Environment - Phidget Sensor vs Lab Thermometer vs Air-conditioner Remote
	Phidget Sensors vs Accuweather
	Panel voltage - Lab vs outside
	Phidget Sensors vs Multimeter
	Charge Controller Terminals
	SMS Notification
	Luminosity results
	Averages of last 2 days

	Conclusion

	User Guide
	Introduction
	Sensors and Phidget Interface Kit
	Raspberry Pi
	Web Portal
	Android Application
	Conclusion

	Conclusion
	Bibliography

