Remote Sensor Network for Solar Power Monitoring

Proposer & Supervisor: Professor Antoine Bagula

Student/Researcher: Zenville Erasmus

Research type: Intelligent Systems and Advanced Telecommunication

UNIVERSITY of the WESTERN CAPE

A quick recap...

A quick recap...

A quick recap...

Testing Methodology

Incremental approach

- White-Box testing Static Testing
- Stress Testing
- Performance Testing

Testing and Validation

- Leaching vs AC Power
- Battery Usage
- Phidget Sensors vs Multimeter
- Lab Temperature
- Panel voltage
- SMS Notification

Testing

Battery Leaching vs AC Power

A voltage leakage exists that effects the Precision Voltage Sensor reading when leaching.

Battery Usage

Cycle

Standby

Power source on regular basis	Emergency power source
Discharged and subsequently recharged	Kept fully charged so that it can "kick in" immediately
	Remains connected to a trickle charger that will keep it fully charged and ready for use

Testing - Calibration Phidget Sensors vs Multimeter

	Phidget Sensor	Multimeter
Parameter		
DC Volt(s)	11.036	12.07
DC Current	0.152	0.440
Power	1.677472	5.3108

Testing – Calibration Lab Temperature

Parameters	Phidget	Lab	Aircon.
	Sensor	Thermometer	Remote
Ambient Temperature (°C)	21.78	21.70	22.00

- Temperature readings were measured against twin air-conditioner temperatures set to 22 degree Celsius
- The air-conditioners were allowed to blow for 15 min. before readings were taken.

Testing – Panel Voltage

	Lab	Outside
Parameter		
Panel Voltage	12.71 - 14.67 V	20.6 – 21.1 V

Readings taken at 14:00 on 21 August 2014.

- · Main emphasis is to illustrate the power generation capabilities of the panel in use
- It is able to generate a voltage indoors by scavenging from secondary power sources (lab lighting).

Testing – SMS Notification

Voltage Range	SOC (Approx.)
11.58 <= voltage < 11.75	20%
11.31 <= voltage < 11.58	10%
10.50 <= voltage < 11.31	0%

Field test - A voltage of 11.018V

SMS

D

Questions

