

__

IDART DATA MART

By

ZUKILE RORO

A report submitted in partial fulfillment of the
requirements for the degree of BSc Honours

(Computer Science)

University of the Western Cape

2010

University of the Western Cape
Department of Computer Science
Supervisor: Dr William D. Tucker

ABSTRACT

IDART DATA MART
by Zukile Roro

 Supervisor: Dr William D. Tucker
 Department of Computer Science

The Intelligent Dispensing of ART (iDart) is the software solution designed by Cell-Life to
support the dispensing of antiretroviral drugs in the public health sector.
The purpose of this project is to combine data from multiple instances of iDart into a single
data mart that can be used by Cell-Life for analysis and reporting. The data mart design will use
the star schema instead of snowflake schema. The advantage of using this schema is that it
reduces the number of tables in the database.

A dashboard user interface will be used. Implementing a dashboard will allow Cell-Life to find
an overall view of antiretroviral drug treatments. A High-Level Design provides an overview of
the system, and includes a high-level architecture diagram depicting the components and
interfaces that are needed. The low level design will contain: detailed functional logic of the
module in pseudo code, database tables with all elements including their type and size, all
interface details with complete API references(both requests and responses), complete input
and outputs for a module(courtesy 'anonimas').

ACKNOWLEDGMENTS

First and foremost I would like to thank my family for their support, without them I wouldn’t
be where I am today. Then I wish to thank my supervisor Dr William D. Tucker for his kind
supervision, advices and support.

Table of contents

Abstract ... i

Acknowledgements .. ii

Table of contents ... iii

List of figures ... iv

List of Tables ... v

Glossary .. vi

Chapter 1: Introduction .. 1

Chapter 2: User requirements .. 3

2.1 User's view of the problem .. 3

2.2 Expectations from a system ... 3

2.3 Not expected from a system ... 3

2.4 General constraints .. 3

Chapter 3: Requirements Analysis ... 5

3.2 User requirements interpretation .. 5

3.3 Suggested system .. 5

3.4 Testing the suggested solution .. 6

Chapter 4: User Interface Specification .. 7

4.1 What the user interface looks like to the user... 7

4.2 How the user interface behaves ... 7

4.3 How the user interacts with the system .. 8

4.4 Suggested system .. 8

Chapter 5: High Level Design .. 11

5.1 Components .. 11

5.2 User interface design .. 11

5.3 Use case index ... 11

5.4 Class diagram ... 12

5.5 Schema .. 12

Chapter 6: Low Level Design ... 13

6.1 Details of class attributes .. 15

6.2 Details of class methods/functions .. 15

6.3 Pseudo-code ... 16

LIST OF FIGURES

Figure 1: IDART DATA MART CONCEPT ... 1

Figure 2: OVERVIEW OF THE SYSTEM ... 6

Figure 3: USER INTERFACE SPECIFICATION .. 8

Figure 4: KPI TOOLBAR ... 8

Figure 5: KPI EXAMPLE .. 9

Figure 6: KPI EXAMPLE CASE 1 .. 9

Figure 7: KPI EXAMPLE CASE 2 .. 10

Figure 8: USE CASE .. 12

Figure 9: CLASS DIAGRAM ... 13

Figure 9: DATA MART SCHEMA .. 13

 LIST OF TABLES

Table 1: OBJECTS REQUIRED ... 11

Table 2: USE CASE INDEX TABLE ... 12

Table 3: A DESCRIPTION OF ATTRIBUTE .. 15

Table 4: A DESCRIPTION OF CLASS METHODS .. 15

Table 5: A DESCRIPTION OF FUNCTIONS/METHODS ... 16

GLOSSARY

ARV–AntiRetroViral

iDart – Intelligent Dispensing of ART

IDE - Integrated Development Environment is a software application that provides
comprehensive facilities to computer programmers for software development.

Dashboard – A reporting tool that presents key indicators on a single screen, which includes
measurements, metrics, and scorecards.

Data mart - It is a simple form of a data warehouse that is focused on a single functional area.

ETL - Extract, Transform, and Load is a process in database usage.

GUI - Graphical User Interface

HIV – Human Immunodeficiency Virus

KPI – Key Performance Indicators

OOA – Object Oriented Analysis

OOD – Object Oriented Design

Pentaho – The Pentaho BI Project is open source application software for enterprise reporting,
analysis, dashboard, data mining, workflow and ETL capabilities for business intelligence
needs.

PostgreSQL– PostgreSQL, often simply Postgres, is an object-relational database management
system (ORDBMS).

RA – Requirement Analysis

Star schema - is the simplest style of data warehouse schema.

Talend - is an open source data integration software vendor which produces several enterprise
software products, including Talend Open Studio.

UIS - User Interface Specification

UR – User Requirements

1

C h a p t e r 1

INTRODUCTION

Any online transaction processing (OLTP) data contains information that can help in making
informed decisions about businesses. For example, you can calculate your net profits for last
quarter and compare them with the same quarter of the previous year. The process of analyzing
your data for that type of information, and the data that results, are collectively called business
intelligence. Because most operational databases are designed to store your data, not to help
you analyze it, it’s expensive and time consuming to extract business intelligence information
from your database. The solution: an online analytical processing (OLAP) database, a
specialized database designed to help you extract business intelligence information from your
data.

In response to a request from the Desmond Tutu HIV Foundation to assist the management of
ARV dispensing, the Intelligent Dispensing of ART (iDart) system was developed by Cell-life
which in 2009 is in over 20 clinics dispensing drugs to more than 45,000 patients. This system
is used by pharmacists to manage the supply of ARV stocks, print reports and manage
collection of drugs by patients.

One of many iDart sites is the ARV pharmacy at the Tsepong Wellness Centre which became
the third Elton Aids Foundation sponsored health care facility to receive the iDart system. The
Tsepong Wellness Centre is currently servicing over 6000 HIV+ patients.

What is a data mart?: It is a simple form of a data warehouse that is focused on a single
functional area. Data marts represent the retail level of the data warehouse, where data is
accessed directly by end users.[3] The goal of this project is to combine data from multiple
instances of iDart into a single data mart that can be used for reporting and analysis by Cell-life
(see Figure 1).

2

Concerning the data mart design, two commonly used schemas are the star and snowflake
schema. In star schema the fact is denormalised, all dimension tables are normalise and there
will be primary foreignkey relationship between fact and dimension tables. For better
performance we use star schema when compare to snow flake schema where fact table and
dimension tables are normalised every dimension table there will be a look table meaning that
we have to dig from top to bottom in the snowflake schema. The main advantages in star
schema: 1) it supports drilling and drill down options, 2) fewer tables, and 3) less database.

This document is intended to guide development of iDart data mart. It also will give overview
of the project, including why it was conceived, what it will do when complete. Screenshots
showing how the final product will look like and behave are provided.

The object oriented view of the system is presented, analysis of the high level design and
describes the objects needed to implement the system is provided.

This document also presents the object oriented design of the system, analysis of the low level
design and provides details for the object oriented analysis of the system.

The rest of this document is organized as follows. Chapter 2 specifies the user requirements,
Chapter 3 provides the user requirement analysis, Chapter 4 provides the user interface
specification, Chapter 5 specifies the high level design and Chapter 6 the low level design.

3

C h a p t e r 2

USER REQUIREMENTS

This chapter contains the user requirements of iDart data mart. These requirements have been
derived from Cell-life’s project specification. This chapter is intended to guide development of
iDart data mart. This also will give overview of the project, including why it was conceived,
what it will do when complete, and the types of people we expect will use it. Section 2.1
identifies the user's view of the problem, section 2.2 tells what is expected from the software
solution, section 2.3 tells what is not expected from the software solution and section 2.4
identifies general constraints for this data mart design.

2.1 User’s view of the problem

The time and expense involved in retrieving answers from databases means that a lot of
business intelligence information often goes unused. Some organizations use a dozen different
software packages to produce simple reports. Also, if the report doesn't have the proper
information, its creators have to start over. Also, the cost of implementing a full Data
warehouse is higher than that of implementing a data mart. The iDart data mart will help
minimize cost of extracting business intelligence information from iDart instances around the
country.

2.2 What is expected from a software solution?
The software system is expected to possess easy access to frequently needed data and creates
collective view by a group of users.

Cell-Life expects a software solution that can be used for analysis and reporting purposes.
Cell-life would like to be able to generate the following statistics on a monthly/annual basis.

� Number of patients treated(based on packages created)
� Number of patients enroll on treatment

� Number of patients terminating treatment(including reason for termination)
by date, site, gender and age groups (see Appendix A).

2.3 What is not expected from a software solution?
The software solution is not expected to be deployed to all the Cell-Life branches and it is not
expected to be able to function in times of power failure unless a backup power supply is in
place.

Also the software solution is not expected to be used by multiple business units except what it’s
designed for.

2.4 General Constraints

4

We will work under a few number of constraints such as development environment which in
this case has to be the integrated development environment (IDE). Also the database we’ll have
to use is PostgreSQL, to make sure that our product (iDart data mart) is compatible with
existing database which is currently in use.

5

C h a p t e r 3

REQUIREMENT ANALYSIS

Requirements analysis is critical to the success of a development project. [2] Requirements
must be documented, actionable, measurable, testable, related to identified business needs, and
defined to a level of detail sufficient for system design. Requirements can be functional and
non-functional. Section 3.1 identifies the designer's interpretation of the user’s requirements,
section 3.2 describes suggested the software solution and section 3.3 identifies types of testing
strategies to be used when testing the suggested software solution.

3.1 Designer’s interpretation of the user’s requirements

Cell-Life has clearly expressed the requirements for the iDart data mart in the previous chapter
(Chapter 1). Now we will focus on the business and technical requirements needed to
implement the given user requirements. Existing solutions will also be considered.

A basic desktop computer running Windows/Linux will work prefect and a PostgreSQL
Database Management System with Java. For data integration, ETL (Extract, Transform, Load)
tool (Talend) will be used. Pentaho server and Pentaho Dashboard Designer will form part of
the system.

The basic building block I’ll use in data mart design is the star schema. A star schema consist of
one large central table called fact table, and a number of smaller tables called dimension tables
which radiate out from the fact table.
After classifying data from the requirements in Chapter 1, I have the following:

• Date, location/site and patient are dimensions

• Number of patient treated, enrolled for treatment, terminating treatment are facts.

3.2 Suggested solution

The suggested solution will make use of a desktop personal computer (PC) running
Windows/Linux and can be broken down into various parts. The first stage uses ETL (Extract,
Transform, Load) tool Talend Open Studio to retrieve data from stand alone iDart databases to
the iDart data mart. Second stage is accessing data in the data mart, analyzing it, creating
reports, graphs, and charts using a Pentaho dashboard.

6

3.3 Testing the suggested solution

There are many different approaches to test software. For this project, functional and usability
testing will be performed.

1. Functional Testing:

This is a new system and critical, so I must ensure its functional quality. All the features will be
tested to ensure all functions provide the expected output.

2. Usability Testing:
Usability testing of this system will evaluate the potential for errors and difficulties involved in
using the system for Cell-Life related activities.

7

C h a p t e r 4

USER INTERFACE SPECIFICATION

The purpose of this document is to provide a detailed specification of the iDart Data Mart user
interface. These requirements will detail the outwardly observable behavior of the program.
The user interface provides the means for the user, to interact with the program. This User
Interface Specification is intended to convey the general idea for the user interface design and
the operational concept for the software. Many details have been omitted for both clarity and
because they have not been addressed yet. This document will be updated with additional detail
as our analysis and design activities progress.

Section 4.1 gives a description of the complete user interface, section 4.2 shows what the user
interface looks like to the user, section 4.3 tells how the interface behaves and section 4.4 tells
how the user interacts with the system.

4.1 Description of the complete user interface
The User Interface Specification (UIS) consists of one main graphical user interface (GUI),
which consists with different operations enlisted in the options.

4.2 What the user interface looks like to the user

The Login page consists of two text boxes, namely Username and Password, and a Login
command button allowing the users to log into the system. The login page helps the users
to login as a user who visualizes and analyze data contained in the database, and as an
Administrator (someone from the IT department) whose duty is to update, edit and modify the
dashboard.

Once logged on, the user is presented with the dashboard.
Figure 3 shows the complete User Interface Specification (UIS). This is what a simple typical
dashboard for any organization would look like.

8

Figure 3: User Interface Specification (UIS).

4.3 How the user interface behaves
How the dashboard interface behaves during manipulation is interesting. Each Key
Performance Indicator (KPI) on a page is contained with a portlet featuring up to 7 controls in
the upper right corner (Figure 4) used telling the object how to move, resize or do anything else
according to a certain user input.

Figure 4: Example of KPI
With these controls, the KPI can be deleted from the page, enlarged, repositioned over the one
above it and so on. Such behavior provides the user will full control of how data represented
appears in the dashboard.

4.4How the user interacts with the system
A dashboard report is an important tool for any C-level executive and other business manager.
While keeping them on top of vital statistics and Key Process Identifies (KPIs), dashboard
reports help them visualize and track trends on every level of the business and to align activities
with key goals. The user interface enables users to visualize and analyze data stored in the data
mart database. The interface will enable users to choose what data they want to view
(measures) and how they want to view it (dimensions). Figure 5: illustrates how this is
achieved:

Consider a scenario where a user wants to see the total number of patients treated province/site
name. By clicking the Open Preference menu icon on the Where do most treatments
come from? KPI, third in the left column Figure 4 will be shown.

9

Figure 5:

If the user chooses to view number of treatments by province the output would be as shown in
Figure 6.

Figure 6:KPI example 1.

Where as if the user chooses to view number of treatments by site name the output would be as
shown in Figure 7.

10

Figure 7: KPI example 2.

11

C h a p t e r 5

HIGH LEVEL DESIGN

This chapter presents the object oriented view of the system, analysis of the high level design
and describes the objects needed to implement the system. Each one of these objects is
described and documented, and a data dictionary providing details of each object is provided.

5.1 Components

Component name Component description

Talend Open Studio Talend Open Studio is an open source data
integration product designed to combine,
convert and update data in various locations
across a business.

Pentaho BI Server The BI Server is an enterprise-class Business
Intelligence (BI) platform that supports
Pentaho’s end-user reporting, analysis, and
dashboard capabilities.

Pentaho Dashboard Designer Pentaho Dashboard Designer is within the
Pentaho User Console. Self-service dashboard
designer that lets business users easily create
personalized dashboards with little to zero
training

Table 1: Objects required.

5.2 User interface design (Use Case Diagram)
Optimized User Interface Design requires a systematic approach to the design process. The
importance of good User Interface Design can be the difference between system acceptance
and rejection in the marketplace. If end-users feel it is not easy to learn, not easy to use, an
otherwise excellent product could fail. Good User Interface Design can make a product easy to
understand and use, which results in greater user acceptance. The use case diagram below
shows some functional activities of the system that a user can perform.

12

The above use case diagram illustrates that a generic user requests data from the data mart by
dimension, creates and view reports and can view dashboards and that an administrator has its
own behavior but also have the behavior of the generic user. The benefits of generalization
eliminates duplicate behavior and attributes that will ultimately make the system more
understandable and flexible.

5.3 Use case index

Use Case Use Case Name Primary Actor Scope Complexity

1 Request Data Generic User In Low

2 Get Status Generic User In Low

3 Create Reports Generic User In Mid

4 Edit Dashboard Administrator In High

5 Edit Dashboard
Content

Administrator In High

Table 2: Use case index table.

13

5.4 Class Diagram

Structure diagrams are useful throughout the software lifecycle. Here we’ve used class
diagrams to design and document the system's soon-to-be-coded classes. The purpose of the
class diagrams is to show the types being modeled within the system. These types include:

• a class
• an interface
• a data type
• a component

Due to the nature of this project, we have a few number of classes and the reason for this is the
fact that java script is mainly used. Figure 7 shows a more detailed description of the class
diagrams.

Figure 7. Class diagrams.

14

5.5 Data mart schema
The figure below (Figure 8) shows the data mart schema for the proposed system. It consist of
the three dimension tables and one fact table. The three dimension tables are PatientDimension,
SiteDimension and TimeDimension. Each of these tables contains a number of fields and a
description of data types.

15

C h a p t e r 6

LOW LEVEL DESIGN

This chapter presents the object oriented design of the system, analysis of the low level design
and provides details for the object oriented analysis of the system.

6.1 Details of class attributes

Class Attributes

User Int Userid- uniquely identifies the user
String Username- stores the username of the
user
String password- stores the user password

adminuser Int adminnumber- uniquely identifies the
admin user

countMeasures String measurename- stores the name of the
mesure.

Int count- stores the number of measures

login String Username- stores the username of the
user
String password- stores the user password

Table 3. A description of attributes of each class.

6.2 Details of class methods

Class Function

User Public int setUserid()- sets the userid
Public void setUsername()- sets the
username of the user.
Public void setPassword()- sets the user
password
Public int getUserid()- returns the user id
when invoked.
Public int getUsername()- returns the user
name when invoked.

Public int getPassword()- returns the user
password when invoked.

16

adminuser Public int setAdminnumber()- sets the
admin user number
Public int getAdminnumber ()- returns the
admin user number when invoked.
Public void adduser ()- adds a new user
when invoked.
Public deleteUser ()- deletes a specified user
when invoked.

countMeasure Public void setMesurename()- sets the
measure name.

Public void setCount()- sets the count
Public int getMesurename ()- returns the
measure name.
Public int getCount()- returns the measure
count
Public void countMeasure ()- returns the
actual value of the specified when invoked.

login Public void setUsername()- sets the
username of the user.

Public void setPassword()- sets the user
password

Public int getUsername()- returns the user
name when invoked.

Public int getPassword()- returns the user

Table 5. A description of methods/functions of each class.

6.3 Pseudo code
public class User {

 public int Userid;
 public String password;
 public String password;

 /**
 * Constructor for User.
 * @param Userid int
 * @param Username String
 * @param password String
 */

 /**
 * Method getUserid.

17

 * @return int
 */
 public int getUserid() {
 return Userid;
 }

 /**
 * Method setUserid.
 * @param Userid int
 */
 public void setUserid(String Userid) {
 this.Userid = Userid;
 }

 /**
 * Method getUsername.
 * @return String
 */
 public String getUsername() {
 return Username;
 }

 /**
 * Method setUsername.
 * @param Username String
 */
 public void setUsername (String Username) {
 this. Username = Username;
 }

 /**
 * Method getPassword.
 * @return String
 */
 public String getPassword() {
 return Password;
 }

 /**
 * Method setPassword.
 * @param Password String
 */
 public void setPassword (String password) {
 this.password = password;
 }

}

public class admin_user extends User {

 public int adminnumber;

 /**
 * Constructor for admin_user.
 * @param adminnumber int
 */

18

 /**
 * Method getAdminnumber.
 * @return int
 */
 public int getAdminnumber () {
 return adminnumber;
 }

 /**
 * Method setUserid.
 * @param adminnumber int
 */
 public void setAdminnumber (String adminnumber) {
 this.adminnumber = adminnumber;
 }

public void adduser() // delete & update are similar
{
 String name, password;
 Int userid;
 Connection db; // A connection to the database
 Statement sql; // Our statement to run queries with
 DatabaseMetaData dbmd; // This is basically info the driver delivers
 // about the DB it just connected to.

 Class.forName("org.postgresql.Driver"); //load the driver
 db = DriverManager.getConnection("jdbc:postgresql:"+database,
 username,
 password); //connect to the db
 dbmd = db.getMetaData(); //get MetaData to confirm connection
 System.out.println("Connection to "+dbmd.getDatabaseProductName()+" "+
 dbmd.getDatabaseProductVersion()+" successful.\n");
 sql = db.createStatement(); //create a statement that we can use later

 String sqlText = "insert into usertable values (name,userid,password
etc)";

 sql.executeUpdate(sqlText);

 //some exception handling code for invalid password, etc.

}

}

Public class countMeasure{

import java.sql.*; // Everything we need for JDBC
import java.text.*;
import java.io.*;

public void countMeasure()
{
 Int measure;
 Connection db; // A connection to the database
 Statement sql; // Our statement to run queries with
 DatabaseMetaData dbmd; // This is basically info the driver delivers

19

 // about the DB it just connected to.

 Class.forName("org.postgresql.Driver"); //load the driver
 db = DriverManager.getConnection("jdbc:postgresql:"+database,
 username,
 password); //connect to the db
 dbmd = db.getMetaData(); //get MetaData to confirm connection
 System.out.println("Connection to "+dbmd.getDatabaseProductName()+" "+
 dbmd.getDatabaseProductVersion()+" successful.\n");
 sql = db.createStatement(); //create a statement that we can use later

 // Here will be a code that will actually count each of the measures
 This is tricky since on our data sources these measures aren’t

 Counted.
 String sqlText = "";

 sql.executeUpdate(sqlText);
 measure = sql.getUpdateCount();
}

20

Bibliography

[1] BATIN, C., SERI, S., AND NAVATE, S.B, (1994) Conceptual Database Design: An Entity
Relational Approach, Redwood City, California

[2] Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis, ed
(March 2005).

[3] InfoManagement Direct, November 1999. Data Mart Does Not Equal Data Warehouse
[online]. Available http://www.information-management.com/infodirect/19991120/1675-1.html
[accessed 7 March 2010]

[4] KIMBALL, R.,(1996): The Data Warehouse Toolkit, New York: J. Wiley & Sons.
[5] KIMBALL, R.,(1997): DBMS Online,A Dimensional Manifesto August, 1997.

21

APPENDIX A

22

APPENDIX B

