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Underground mining operations are carried out in hazardous environments. To prevent disasters from occurring, as often as they
do in underground mines, and to prevent safety routine checkers from disasters during safety inspection checks, multirobots are
suggested to do the job of safety inspection rather than human beings and single robots. Multirobots are preferred because the
inspection task will be done in the minimum amount of time.This paper proposes a cooperative behaviour for a multirobot system
(MRS) to achieve a preentry safety inspection in underground terrains. A hybrid QLACS swarm intelligent model based on Q-
Learning (QL) and theAnt Colony System (ACS) was proposed to achieve this cooperative behaviour inMRS.The intelligentmodel
was developed by harnessing the strengths of both QL and ACS algorithms.TheACS optimizes the routes used for each robot while
the QL algorithm enhances the cooperation between the autonomous robots. A description of a communicating variation within
the QLACS model for cooperative behavioural purposes is presented. The performance of the algorithms in terms of without
communication, with communication, computation time, path costs, and the number of robots used was evaluated by using a
simulation approach. Simulation results show achieved cooperative behaviour between robots.

1. Introduction

Multirobot systems share the need to cooperate, creating
the problem of modelling behaviour. When dealing with
multiple robots, with randomness involved, the dynamic and
unpredicted nature of the environment has to be considered.
Hence, the behaviouralmodelling systemhas to copewith the
random (dynamic and unpredictable) nature of the system.
Researchers, on the other hand, have been captivated by this
cooperative and coordinated problem of multirobot systems
(MRS) in recent times. A list of literature on multiple robots’
cooperation implemented in space was reviewed in [1]. Using
multiple robots to achieve tasks has been more effective than
using a single robot. See for instance [2, 3] (and all references
therein) for some specific robotic tasks.

For a full discussion of underground mines, benefits, and
disaster rates, see [4]. Safety is a major element in the under-
ground mine; despite a significant reduction through safety
research measures, the number of disasters in underground
mines in South Africa and the world at large remains high
[5]. To contribute to underground mine safety, that is, to
prevent disasters from occurring, interacting autonomous
multirobots are sent before mine operations resume to
inspect how safe the underground mine is. This is achieved
by assessing the status of the rocks, roofs, and level of toxic
gases.

A multirobot planning algorithm for tunnel and corridor
environments is implemented in [6]. The overall problem
formulation is implemented using a topological graph and
spanning representation. Activities, such as a single robot
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drive and differential robots drive that can rotate in place,
are carried out at different positions of the graph. Different
methods have been used to tackle coordination of MRS
in different domains [7]. Complete task coordination by
multirobots was handled [3, 8]. An extension of a market-
based approach was used. This was achieved by generalizing
task descriptions into tasks trees, thereby allowing tasks to be
traded in a market setting at a variable level of abstraction.
Figure 1 shows an overview of the inspection environment.

We consider a scenario in which an MRS cooperates
to achieve a common goal of safety inspection in a par-
tially observable environment such as the underground
terrain. Each robot requires to be guided using the proposed
cooperative behavioural model. Finding a plan to achieve
this cooperative model often involves solving an NP-hard
problem. This is so because it involves multiple interacting
robots.The interactionwhich comes as a result ofminimizing
time involved in achieving underground inspection requires
reasoning among the robots. In this case, we use the QL
technique to cleverly achieve the reasoning aspect of this
work and combine it with optimal route finding using ACS.
The two major questions answered in this problem are the
following: (1)which state/room should I inspect nowwithout
repetition and a collisionwith another robot? (2)Howdo I get
there using the closest link? However, all robots have partial
knowledge of the environment and they are all equipped with
the necessary sensors required for the inspection. The major
contributions of this paper are as follows:

(i) development of a hybrid QLACS swarm intelligent
model based on Q-Learning and the ant colony
system for addressing cooperative behaviours inMRS
achieving underground terrain safety inspections;

(ii) detailed experimental evaluations of the proposed
QLACS model conducted on a simulated publicly
available underground tunnel. Also, the proposed
model is benchmarked with related methods;

(iii) systematic description of worked scenarios on an
optimal route finder andMRS cooperative inspection
using QLACS for ease of implementation by system
engineers, robotics researchers, and practitioners.

We do not know of any study that analytically describes
how a swarm intelligent model can easily be implemented
and applied to a multirobot system in a heterogeneous envi-
ronment. In the next section, we discuss related work in the
area of multirobot systems for underground terrains’ safety,
reinforcement learning (RL), and ant colony optimization
(ACO). We then detail our proposed cooperative behaviour
framework and approach.The experimental results and eval-
uations of the safety inspections follow. Finally, we conclude
by summarizing and discussing other future extensions.

2. Theoretical Background

In this section, we review some of the related work to MRS
for underground terrains safety, which is the foundational
domain for our research. A look at RL algorithms and its
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Figure 1: Overview of MRS inspection in an underground mine.

paradigms follows in Section 2.1. ACO and its paradigm
applied in MRS conclude Section 2.

2.1. Related Multirobot Systems for Underground Terrains
Safety. Effective, exhaustive, quick, and safe navigation of
an MRS is subject to its ability to perceive, interpret, and
interact (cooperate) within their environment. MRS can be
used to achieve different tasks autonomously in structured
and unstructured environments. In these environments, the
automation of the operations is effected in different areas
of MRS research: biologically inspired robot teams, commu-
nication, architectures and task planning, localization and
mapping, object transportation and manipulation, learning,
and so forth [9]. However, an environment such as the
underground terrain has been a grey application domain in
MRS research.

As indicated in Section 1, Peasgood et al. [6] implemented
a multiphase algorithm for multirobot planning in tunnel
environments. The algorithm as presented assumed a cen-
tralized planning architecture. They further compared the
multirobot planning with a sequential planner. Their future
work was to consider a decentralized planner architecture
and might explore hybridizing the two planning algorithms.

Thorp and Durrant-Whyte discussed a starter on field
robots [10]. From their discussion, field robotics involves the
automation of platforms such as air, sea, and land in harsh
unstructured environments such as underwater exploration,
mining, agriculture, and highways. Field robots are made up
of three parts: navigation and sensing, planning and control,
and safety. Their work also discussed the challenges and
progress of field robots. One of the major challenges of field
robots in harsh environments such as an underground mine
is the problem of position determination (localization). This
is so because the global positioning system (GPS) can only
help in an environment where the sky views are guaranteed.
However, progress has been made in automating some of the
environments that are cooperatively constrained.

The proposed model presented in [4] promised to handle
the safety part of field robots presented by Thorp and
Durrant-Whyte [10] in underground mines. Their model
architecture had three layers; the first layer handles the
cooperative behaviour of the model, the second layer deals
with the scalability degree of the model, and the last layer
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Steps:
initialize 𝑄(𝑠, 𝑎) arbitrarily
repeat (for each episode):

initialize 𝑠
Repeat (for each step of episode):

Choose 𝑎 from s using policy derived from 𝑄

Take action 𝑎, observe 𝑠, 𝑠󸀠

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾max
𝑎
󸀠

𝑄 (𝑠
󸀠
, 𝑎
󸀠
) − 𝑄 (𝑠, 𝑎)]

𝑠 ← 𝑠󸀠

until s is terminal

Algorithm 1: Q-learning algorithm.

handles the applicability of the model. This paper is building
on what has already been proposed in [4].

An investigation into automating the underground mine
environment after blasting, called “making safe,” was carried
out in [11] to ensure the safety of the environment after blast-
ing. Blasting in an underground mine is the controlled use of
explosives to excavate, break down, or remove rock.The need
to investigate the stability of the environment after blasting
before any mining operation takes place is of the highest
priority, hence, the reason for automation. The automation
was centred on a persistent area of concern in South African
underground mine operation called hanging walls which is
caused as a result of rock burst and fall of ground. There
are also other persistence areas such as the levels of toxic
gases which pose great disaster threats to the lives of miners,
for instance, heat sicknesses, explosions, pneumoconiosis
(occupational safety and health-fall of ground management
in South Africa, SAMRASS-code book for mines), and so
forth. Some of these disasters might result in fatalities and/or
disabilities. Again, when an accident happens during mining
operations, rescuers find it difficult to respond immediately
to accidents. Looking at the aforementioned concerns, there
will be a need to create models for safety inspection of
underground mine operations. For instance, monitoring the
underground mine environment for detecting hazardous
gases and/or smoke should be one of the important safety
measures. Continuousmonitoring of workers and equipment
is another crucial safety measure [5]. Picking up the sound
from roof cracking to monitor when a roof is about to fall is
also a safety item.

2.2. Reinforcement Learning. For a robot to operate in a
harsh unstructured environment, considering every possible
event in defining its behaviour is intricate [12]. It is, however,
essential to develop robots that can conform to changes in
their environment. RL is one of the artificial intelligence
(AI) algorithms that can achieve learning by experience.
This enhances robots’ interaction with the environment. We
investigate the use of RL to assist the behaviours of an MRS
in safety inspection of underground mines. RL is a sequence
of actions and state transitions with some associated rewards.
What is being learned in RL is an optimal policy (what is the
right thing to do in any of these states (𝑠)) [13].

At any time step each robot is in a specific state in relation
to the environment and can take one of the following actions:
inspect, ignore, or shutdown. Each robot receives feedback
after performing an action, which explains the impact of the
action in relation to achieving the goal.The effect of the action
can be either a good or bad reward. This reward is measured
in terms of values.Therefore, the value of taking an action 𝑎 in
any state 𝑠 of the underground terrain is measured using the
Action-Value function called 𝑄-value 𝑄𝜋(𝑠, 𝑎). When a robot
is starting from state 𝑠, taking action 𝑎, and using a policy
pi(𝜋), an expected return which is defined as the sum of the
discounted rewards is achieved.

In this research, Q-learning, a method of RL, is explored.
The purpose of RL methods is to study 𝑄

𝜋(𝑠, 𝑎) values
so as to achieve optimal actions in the states. QL is an
online RL method that requires no model for its application
and stores the reinforcement values outcome in a look-up
table. The QL architecture used in this work consists of
learning threads, which amount to the number of robots
involved in the inspection behavioural task. Each robot in
the learning thread carries out Q-learning in the environ-
ment. Algorithm 1 explains the QL algorithm used in the
behavioural model.

𝛼 is the learning rate set between 0 and 1. At 0, 𝑄-values
are never updated, hence nothing is learned; learning can
occur quickly at 1. 𝛾 is the discount rate set between 0 and 1 as
well. This models the fact that the future rewards are worth
less than the immediate rewards. max

𝑎
󸀠 is the maximum

reward that is attainable in the state following the current
state. That means the reward for taking the optimal action
thereafter.

QL is a competitive and search-based algorithm inspired
by computational theory. It is not necessarily a multiagent
algorithm but can be adapted to a multiagent or multigoal
scenario.The success of this algorithm relies on the value and
policy iterations, which can be adjusted by some unfairness
(heuristics) to fit the current problem scenario. The most
competitive action is selected by its value and action leads to
another state or condition. Both value and policy are updated
after each decision. Harnessing QL for an MRS scenario
increases the cost exponentially and the overall performance
drops in the same direction. As the robots increase cost, such
as completion time, memory usage, and awareness factor



4 Mathematical Problems in Engineering

Table 1: Variant of ACO.

S/N Year Algorithm
1 1991 Ant system (AS)
2 1992 Elitist A.S
3 1995 Ant-Q
4 1996 Ant colony system
5 1996 Max-Min A.S (MMAS)
6 1997 Ranked based A.S
7 1999 ANTS
8 2000 BWAS
9 2001 Hypercube A.S

(other robots in the environment), search time increases.
However, following our heuristic model of QL which was
mainly determined by the policy we set to achieve our goal,
our QL performs well above traditional QL.

2.3. Ant Colony Optimization. ACO is a type of swarm
intelligence (SI). Bonabeau et al. [14] defined SI as any attempt
to design algorithms or distributed problem-solving devices
inspired by collective behaviour of social insect colonies
and other animal societies. This implies that anytime some-
thing is inspired by swarms, it is called swarm intelligence.
Researchers have been thrilled by swarms because of some
of their fascinating features. For instance, the coordinated
manner in which insect colonies work, notwithstanding
having no single member of the swarm in control, the
coordinatedways inwhich termites build giant structures and
how the flocks move as one body, and the harmonized ways
in which ants quickly and efficiently search for food can only
be attributed to an emergent phenomenon [15, 16].

Ants, an example of a social insect colony, achieve
their self-organizing, robust, and flexible nature not by
central control but by stigmergy. Stigmergy, also known as a
pheromone trail, describes the indirect communication that
exists within the ant’s colony. The indirect communication
which is triggered by pheromone trails helps in recruitment
of more ants to the system. Ants also use pheromones to find
the shortest paths to food sources. Pheromone evaporation
prevents stagnation, which also helps to avoid premature
convergence on a less than optimal path [17].

ACO is necessarily amultiagent based algorithm.Thefirst
implementation of this optimization algorithm is in a classical
search based (combinatory) problem, the travelling salesman
problem, giving the shortest path to a specified destination.
After this feat, many researchers have used it or its variants
to model different problems. In this work, a variant of ACO
is used to find the optimal path for MRS. Table 1 describes
variants of ACO and their meaning [18]; see also [19] and all
references therein.

In AS, the pheromones are updated by all the ants that
complete a tour. ACS is the modified version of AS, which
introduces the pseudorandom proportional rule. In elitist
AS, ants that belong to the edges of the global best tour get
an additional amount of pheromone during the pheromone

update. MMAS introduces an upper and lower bound to the
values of the pheromones trails. All the solutions are ranked
to conform to the ants’ length in ranked-based AS [20].

Our interest is in implementing ACS to find the best pos-
sible round trip inspection path in our model environment.
This best possible inspection path will be supplied as input
or made available for the robots using QL for inspection
decisions. In most of the route finding scenarios, the nodes
are linearly joined and are not largely distributed. This is
a scenario where ants can forage along at least two paths
(multigoal path environment, though in our case there is a
path exposed to four different goals; see Section 3).

3. Proposed Cooperative MRS
Behaviour Framework

The following are some of the factors we are considering in
the course of building the model. Each robot has to learn
to adjust to the unknown underground mine environment.
In this case, each robot requires intelligence and a suit-
able machine learning algorithm is adopted. No robot has
global information of the environment because of its limited
sensing capabilities. Each robot has limited communication
capabilities; therefore, each robot has to keep track of the
information of others to remain in a team. Figure 2 describes
the proposed framework as an approach for building the
distributed, coordinated inspecting model for MRS.

The framework indicates three layers of the model: the
bottom layer, the middle layer, and the topmost layer. The
learning capability of the MRS is achieved in the bottom
layer, with the reinforcement learning algorithm and swarm
intelligence technique. This intelligence enables robot A to
take action knowing the action of robot B and vice versa. At
the middle layer, scalability in terms of the number of robots
the system can accommodate is achieved. This is expedient
because a team of robots tends to achieve tasks more quickly
and effectively than single robots. This scalability is handled
with some memory management techniques, as indicated in
Figure 2.The real life implementation is achieved by using the
information acquired from the topmost layer. Figure 3 is the
breakdown of the framework in Figure 2.

There is a base-station or server that serves as a backup
for the information captured and analysed from individual
robots. The model proposed in this research deals with
the way in which robots need to find their way within
communication range and uses a broadcast approach for
effective communication of navigation status. A team of
robots cooperatively inspecting an area in the underground
mine will need to know where they are and where to
go next, so it is obviously a continuing problem and our
contribution in this case is that before robot R1 takes an
action, it broadcasts its location and inspection status to
other robots, R2, R3, and so forth, and vice versa. An
unreachable robot receives packets of information based on
the destination address through rerouting from the nearer
robots.The reliability of this broadcastmethod is the ability to
determine the extent of the task executed already by looking
at the memory of any leading robot in the team.
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Figure 2: Framework of the proposed QLACS model for cooperative behaviours.

Table 2: State and possible actions of the environment.

State Possible Actions
1 A (lower left part (LLP)) Inspect, ignore
2 B (lower middle part (LMP)) Inspect, ignore
3 C (lower right part (LRP)) Inspect, ignore
4 D (middle left part (MLP)) Inspect, ignore
5 E (central part (MCP)) Inspect, ignore
6 F (upper left part (ULP)) Inspect, ignore
7 G (upper right part (URP)) Inspect, ignore
8 H (outside mine part (OMP)) Shutdown

3.1. Problem Formulations. Suppose we have seven rooms/
states connected by doors/links representing underground
mine regions as shown in Figure 4 and labeled as shown in
Table 2. We label each room 𝐴 through 𝐹. The outside of the
mine can be thought of as one big room (𝐻). Notice that
doors 𝐹 and 𝐶 lead outside the mine 𝐻. We put two robots
in rooms 𝐹 and 𝐶 as their starting states, respectively. The
robots inspect one state at a time, considering the obstacles
encountered in the process. The robots can change direction
freely, having links/doors to other rooms/states. In each of
the states in Figure 4 two actions are possible: inspection of

roof cracks (RC) and level of toxic gases (TG), or ignoring
the state, as it has been inspected earlier. According to
our proposed model, a robot can inspect at least half of
the given underground mine region to attain its maximum
performance, which in turn attracts a good reward. When
the current state of a robot is the end point of the inspection
task, the robots exit the mine using the exit points 𝐶 and
𝐹, respectively. The possible transition states of the robots
are displayed using the state diagram in Figure 5. The state
diagram and the transition matrix are formed using the QL
algorithm.

The global map is assumed to be known by the robots
but there is no prior knowledge of the local map. Robots
only know what they have sensed themselves and what
their teammates communicate to them. Not only does our
improvedQL depend on themap of the environment but also
each robot learns through experience about local changes.
They explore and inspect from state to state until they get
to their goal states. Our proposed model QLACS achieves
an offline mode for the route finding algorithm (ACS). This
means that the global view of the map would have been
provided before the learning robots start.

The model is explained using simulations; the results are
presented in Section 4. Some of the results also have graphical
interpretations. Analysis by a state transition diagram is
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Table 3: Initial reward matrix.

Robot’s action
A B C D E F G H

Robot’s state

A — 50, 100 — 50, 100 — — — —
B 50, 100 — 50, 100 — 50, 100 — — —
C — 50, 100 — — — — 50, 100 150
D 50, 100 — — — 50, 100 50, 100 — —
E — 50, 100 — 50, 100 — 50, 100 50, 100 —
F — — — 50, 100 50, 100 — 50, 100 150
G — — 50, 100 — 50, 100 50, 100 — —
H — — 50, 100 — — 50, 100 — —

Bottom layer
‐ A new hybrid model QLACS

‐ An efficient cooperative and
navigational model

Middle layer
‐ An efficient scalable system

Topmost layer
‐ Acquired results stored for future use

(a) (b)

Shortest round trip paths
Good communication
Time of performance

Number of iterations used
Thorough inspection

Exit the system

Are they
successful?

Monitor memory
with the

utilization
interface platform

Record the results

Acquire information
from the bottom

layer

Build a hybrid model
using QL and ACS

algorithms

Two robots

Test robots for:

Add one more
robot to the

system

Results will be
used in the

application layer

Database

Yes No

Database

Figure 3: Breakdown of the framework. (a) Contributions of the framework, Layer by layer, and (b) processes of the multirobot behavioural
system.

presented in Figure 5. The possible state actions of the robots
are presented in Table 3. The states of the robots are reduced
as follows: searching or inspecting for roof cracks and toxic
gas levels in each state or room and recording the outcome
of the inspection in the robots’ memories. The processes
involved in achieving good communication while the robots
inspect the states are broadcasting inspected states to the
other robots and ignoring the inspected/broadcasted state,
avoiding collision with obstacles and other robots and finally
moving to the next available state that has not been inspected.

The Q-learning algorithm is used to determine what
action is to be selected in any particular state. Let the
action (𝑎) = inspect, ignore, shutdown, state space (𝑠) =
dimensions in the topological map, sensor readings (𝑠

𝑟
),

hazardous conditions (𝐻
𝑐
) = roof crack (RC), toxic gas level

(TG). Each robot is configured with an aerial scanner and
chemical sensitive sensor that will provide readings (𝑠

𝑟
),

to determine if there is a hazardous condition, 𝐻
𝑐
, in the

environment. The selection of an action by a robot through
the Q-learning algorithm is based on the information from
the broadcast. The whole framework uses a decentralized 𝑄-
learning scheme such that each robot has its own thread
with its Q-learning and table. All 𝑄-values on the tables of
the robots in the team are initialized to zero; that is, states
corresponding to such positions have not been inspected.
When a robot enters a new state it broadcast its information
for the current state to all other robots in the environment.
The broadcast indicates whether the current state has been
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inspected or not. The broadcast is a search of corresponding
positions in the memories of all visible robots. If the resultant
search returns a zero; the broadcast indicates that the state
has not been inspected and if it returns a value greater than
zero it indicates that the state is not available for inspection.
All robots must receive a broadcast before they act in any
particular state. When a robot gets to a state, it receives a
broadcast and passes its value to the QL algorithm to make
a decision. The robot carries out the decision of the QL
algorithm. The policy of the Q-learning algorithm makes a
robot carry out an inspection if the resultant search of the
broadcast returns zero and ignores it if the resultant search
is greater than zero. A robot only shuts down if all states have
been visited and inspected. As the broadcast information is
passed to the Q-learning algorithm, the policy is iterated
towards an optimal value and condition.

The broadcast avoids the cost of multiple inspections and
the QL ensures that robots take appropriate actions. The
only state in which inspection is carried out would have
sensor readings (𝑠

𝑟
), indicating 𝐻

𝑐
. For taking an action (𝑎)

in state (𝑠), the robot gets a reward (𝑅), which is used in
(10) to compute the 𝑄-value for the current state and can
send a broadcast to other robots. Figure 5 and Table 3 show
the restrictions and possible transitions among node points,
indicating the possible rewards for any particular action (𝑎)

in any state (𝑠). Every other transition besides the goal state

could result in a reward of 50 or 100 and at completion
the reward is the maximum, 150. We consider it wasteful to
make the robots scan first before sharing intelligence because
such action would slow them down and make them expend
more energy. Robots are to provide the inspection results,
showing actions taken in different states and the nature of
conditions detected in any particular state. The introduction
of the broadcast approach to determine the team’s exploration
reduces the execution time and energy cost of the whole
teamandmakes the collaboration effective. So in amultirobot
scenario the task can be effectively executed if the robots are
made to share intelligence as they progress. Robots do not
have to waste time and energy in doing the same task already
carried out by other robots in the team.

GIVEN. On a mathematical justification of the above, sup-
pose a safety preinspection of toxic gases or rock fall or some
combination of the two is being carried out on a piece of
complex underground terrain in Figure 1, say 𝐿Km2; there
is a limited number of MRS with different capacities, 𝑅, and
precious inspection time, 𝑇minutes. Every region/state 𝑥

1
in

the terrain requires a capacity of robot𝑅
1
ofMRS and limited

time 𝑇
1
while every state 𝑥

𝑛
requires robot 𝑅

𝑛
of MRS and

inspection time, 𝑇
𝑛
. Let 𝑃

1
be the positive reward of QL for

correct behaviour on state 𝑥
1
and let 𝑃

𝑛
be the reward on

state 𝑥
𝑛
. This research aims to maximise positive rewards by

choosing optimal values for states 𝑥
1
, . . . , 𝑥

𝑛
as follows:

Maximise:

𝑃
1
⋅ 𝑥
1
+ 𝑃
2
⋅ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑃

𝑛
⋅ 𝑥
𝑛

(objective function)

Subject to constraints:

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
≤ 𝐿

(limited total states)

𝑅
1
⋅ 𝑥
1
+ 𝑅
2
⋅ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑅

𝑛
⋅ 𝑥
𝑛
≤ 𝑅

(limited MRS capacity)

𝑇
1
⋅ 𝑥
1
+ 𝑇
2
⋅ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑇

𝑛
⋅ 𝑥
𝑛
≤ 𝑇

(limited inspection time)

Non-negativity constraints:

𝑥
1
≥ 0, 𝑥

2
≥ 0, . . . , 𝑥

𝑛
≥ 0

(MRS cannot inspect negative states) .

(1)

In terms of solving this optimization problem, we use the
proposed QLACS model to compare the time and number of
states inspected.The number of robots used is also compared.
The graphs results in Section 4 also give more insight into the
solution of the problem.

3.2. Basic Navigation and Cooperative Behaviours Using
QLACS. QLACS has two components. The first component
is formed by an improved ACS and the second component
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is formed by an improved QL. The improvement occurs
because some heuristics were added to the ordinary QL and
ACS to achieve the hybrid QLACS. However, the second
component ofQLACS, which is an improvedQL, was initially
used to solve the proposed problem. After much analysis, we
realized that the system needs to be optimized for effective
cooperation and communication.

Using the second component of QLACS to solve the basic
navigation and cooperative behaviour, the possible actions
were set for each robot as inspect, ignore, and shutdown (after
reaching the goal state 𝐻). Also, a reward system that will
reflect the possible actions of the robots was chosen. In other
words, a robot gets 150 points only when the goal is achieved
(shutdown), 100 points for ignoring an already inspected area
(ignore), and 50 points for inspecting an uninspected area
(inspect). Figure 5 shows the transition events of the model
and Table 3 displays the possible state action for each robot.
The way the QLACS second component works here is based
on both navigation and communication behaviours.

Achieving navigational behaviour with the second com-
ponent of QLACS has some cost associated to it. In our
scenario, because we want the robots to share intelligence
by broadcasting results (robots search through other robots’
memory), our problem is not solely navigational but also
cooperative. Our behavioural actions are inspect, ignore,
and shutdown. We noted that these actions of interest are
not navigation oriented; there is no way we could use
them in making decisions on transition. The functions for
decision can be integrated to assist the other. Therefore,
our behavioural model is an integration of two behaviours:
(1) navigational behaviour and (2) cooperating behaviour
through decision making. The integration works with a
route finding method called RandomStateSelector, which we
introduced in the second component of QLACS to help
determine where the robot goes from the starting point to
the exit point. Two parts of the RandomStateSelector method
are introduced in this work. The first one is the Random-
StateSelector C H, which is used to transit from state 𝐶 to𝐻
and the second one, RandomStateSelector F H, transits from
state 𝐹 to 𝐻. This method works but not effectively because
some of the states are repeated several times because of the
random selection method. However, the decision part of this
second component of QLACS, which is handled by a method
called CheckInspection, worked efficiently. CheckInspection is
responsible for sharing the broadcast among the agents. The
broadcast looks at all the stored 𝑄-values on all the robots
and returns a signal for the action that needs to be taken.
Therefore, we concluded that the heuristically accelerated
component of QLACS has proven to be effective by showing
evidence of effective communication in making inspection
decisions using our model. It did not guarantee shortest pos-
sible time for inspection because of repeated states decisions.
In this light, we only harnessed the communication strength
of the second component of QLACS for communication
and cooperation. Figure 5 and Table 3 form the basis for the
QLACS second component.

To take care of the random state selector problem encoun-
tered in implementing the algorithm used for the second
part of QLACS, we introduced an optimized route finder

Table 4: Combined adjacency and weight matrix.

𝐹 𝐺 𝐸 𝐷 𝐴 𝐵 𝐶 𝐻

𝐹 0 1 1 1 0 0 0 1
𝐺 1 0 2 0 0 0 1 0
𝐸 1 2 0 2 0 2 0 0
𝐷 1 0 2 0 2 0 0 0
𝐴 0 0 0 2 0 2 0 0
𝐵 0 0 2 0 2 0 1 0
𝐶 0 1 0 0 0 1 0 1
𝐻 1 0 0 0 0 0 1 0

1

11

1

1
2

2 2

2

2

E

C

G

B

A

D

F

Figure 6: Weighted map/graph of the model environment.

algorithm. This route finder algorithm, which forms the first
component of QLACS, is a swarm intelligence technique.
Figure 6 andTable 4 form the basis of the exploration space of
the agents (ants) which achieved the optimum route finding.
The weighted graph in Figure 6 is based on the number of
obstacles the ants will encounter from the points of entry 𝐹
and 𝐶. The combined table in Table 4 contains the weights
of the obstacles and evidence of an edge between any two
vertices (states). It shows that there is a connection between
any two vertices in a graph. Generally, a “1” or “2” depicts
the existence of an edge while a “0” represents the absence
of an edge, that is, no transition between such vertices. The
constructed graph is an undirected multigraph, providing
evidence of some agents coming from 𝐹 or 𝐶 of the mine
(logical space). It is unidirectional because agents can move
in any particular direction (multigraph). This means that the
sameweights on the edges apply to both directions.The graph
does not show𝐻; we assume that once the agents reach 𝐹 or
𝐶, they exit if all inspections have been done.

3.3. HybridModel Development . Theparameters for building
the analytical hybrid QLACS (equations (2) through (11))
model are presented in Tables 5 and 6.

3.3.1. Algorithmic and Mathematical Analysis

ACS Starts. Computation of edge attractiveness

𝜂
𝑖,𝑗
=

1

𝐷
𝑖,𝑗

. (2)
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Table 5: A list of parameters for the ACS model.

ACO parameters Meaning
𝛼 Pheromone influence factor
𝛽 Influence of adjacent node distance
𝜌 Pheromone evaporation coefficient
𝑄 Attractiveness constant
𝑒 Visited edge
𝑒
󸀠 Edge not visited
𝐿
𝑘 Length tour of ant k

𝜏 Pheromone concentration (amount)
𝜂 Specific visibility function (attractiveness)
Δ𝜏
𝑘 Pheromone concentration by Kth ant

𝑃
𝑟
(𝑖, 𝑗) Probability of moving from i to j

𝐷
𝑖,𝑗 Visibility or distance between i and j

𝑓
𝑖 Fitness of individual in a population
𝑃
𝑖 Probability of being selected among 𝑓

𝑖

𝑁 Number of individuals in the population
𝑖, 𝑗 Denotes any two adjacent nodes in the graph
𝑀
𝑘 Set of unvisited nodes

Table 6: A list of parameters for the QL model.

QL Parameters Meaning
𝑄 𝑄-value update
𝑠 State
𝑎 Action
𝑅 Reward
𝛾 Learning rate

Computation of instantaneous pheromone by ant 𝑘

Δ𝜏
𝑘
=

𝑄

𝐿
𝑘

. (3)

Update of pheromone

𝜏
𝑖,𝑗
= (1 − 𝜌) ∗ 𝜏

𝑖,𝑗
+ Δ𝜏
𝑘

𝑖,𝑗
. (4)

Computation of edge probability

𝑃
𝑟
(𝑖, 𝑗) =

[𝜏
𝑖,𝑗
]
𝛼
[𝜂
𝑖,𝑗
]
𝛽

Σ
𝑒
󸀠
=(𝑖,𝑗)

[𝜏
𝑖,𝑗
]
𝛼
[𝜂
𝑖,𝑗
]
𝛽
. (5)

Adoption of roulette wheel

Cumulative (𝑃
𝑟
(𝑖, 𝑗)) =

𝑁+1

∑
𝑖=1

𝑃
𝑟
(𝑖, 𝑗) , (6)

𝑓
𝑖
=
∑
𝑁

𝑗=1
𝑓
𝑗

𝑁
, (7)

𝑃
𝑖
=

𝑓
𝑖

∑
𝑁

𝑗=1
𝑓
𝑗

. (8)

Equations (2) through (8) build the complete route find-
ing model. Equations (2) through (4) are prerequisite to (5).
Equation (5) is prerequisite to roulette wheel selection. At the
end of (8), new states are selected and the trail is updated.The
best path from both directions is selected and used as input
in Q-learning. Note that 𝐷

𝑖,𝑗
= weight on edges, 𝑃

𝑟
(𝑖, 𝑗) =

chance of moving to a node 𝐸(𝐼, 𝑗), 𝐿
𝑘
= sum of visited nodes

by ant 𝑘.

QL Starts. Each robot in its QL thread
computes its learning rate:

𝛾 =
0.5

[1 + Frequency (𝑠, 𝑎)]
. (9)

𝑄-values are updated:

𝑄 (𝑠, 𝑎) = 𝑅 (𝑠, 𝑎) + 𝛾 (10)

making a broadcast (Decision = Inspect/Ignore/Shut-
down)

𝑄 (𝑠, 𝑎) =

{{

{{

{

𝑄 = 0 Inspect if 𝑠
𝑗

̸= goalstate
𝑄 > 0 Ignore if 𝑠

𝑗
̸= goalstate

𝑄 ≥ 0 Shutdown if 𝑠
𝑗
= goalstate.

(11)

Equation (9) is Gamma, the learning rate, which is always
between zero and 1. This equation is calculated based on
the frequency of action of each robot in inspecting states.
Equations (9) to (11) are state-dependent. The states are kept
in a buffer and then accessed at run time. ACS and QL do not
work simultaneously. ACS works to completion and QL takes
the final output as its input. ACS is not repeatedly called while
QL is working.

Our behavioural model is an integration of two algo-
rithms: (1) route finding algorithm (2) communication and
cooperative algorithm. The integration works the following
way. The optimal route finder (ACS) determines where the
robot goes from the starting point to the destination, while
QL determines what action it takes when it gets to any of
the states. This collaboration works effectively because the
optimal route finder has been proven to give the best possible
transitions and the heuristically accelerated QL has proven
to be effective by showing evidence of effective commu-
nication in making inspection decisions. Consequently, it
guarantees the shortest possible time for inspection in the
absence of wasteful inspection decisions. This framework
forms the basis for our cooperative behaviourmodel forMRS
(QLACS).Thepseudocode for the implementation ofQLACS
is outlined in Algorithm 2.

3.3.2. QLACS Hybrid Approach Evolution. Figure 7 is the
architecture of hybrid QLACS explaining the handshake
between the two components.

(i) Graph Construct Module. This is the interconnection of
states in our model environment (see Figure 4). It encom-
passes all possible transitions from 𝐹 to 𝐶 and vice versa.
Thus from themodelwe construct an adjacency/weight graph
matrix that can be traversed by any graph-oriented algorithm.
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INPUT: Edge distance(obstacles), pheromones, ants’ trail, associated probabilities,
starting and terminating indexes that is, from F or C
OUTPUT: Effective cooperation, inspection and navigation

(1) Boolean CompletedFlag = False //Boolean variable indicates completion for all the threads
(2) Declare CompletedThreadBuffer //Data structure stores Info about completed thread
(3) Initialize all 𝑄values to Zero //All 𝑄values positions are initialized to zero
(4) Initialize Best Paths From ACO algorithm //starting from 𝐹 and 𝐶
(5) While (CompletedFlag <> True) //Checks for when all robots have finished and flag is true

Begin
Create N number of Threads in Parallel
Threads get Current States in Parallel from ACO algorithm
Threads get Next States and Indexes in Parallel from ACO algorithm
Threads compare 𝑄values of all corresponding positions of Current States (Each Robot Broadcast
𝑄value info)
IF ((Q == 0)& (ThreadNextState <> GoalState)) //Checks if a particulate state is available
Begin
State is Available, Robot with the CurrentThreadID Inspects
Compute and Update 𝑄value

End
IF (Q > 0) //checks if a state is not available, because an already inspected state has 𝑄 > 0
Begin
State is already inspected, Robot with the CurrentThreadID Ignore
Compute and Update 𝑄value

End
IF ((Q == 0) & (ThreadNextState == GoalState)) //Checks for goal state and shuts down.
Begin
Compute and Update 𝑄value
Goal state is reached and Inspection Completed
Thread with the CurrentThreadID Shuts down
Store CurrentThreadID in CompletedThreadBuffer

End
IF (Count [CompletedThreadBuffer] == NumberOfRobot) //Learning stops when this happens
Begin
CompletedFlag = True

End
End of While Loop.

Algorithm 2: Pseudocode for QLACS.

No

No

Yes

Yes
2

robots

Graph
construct

Initialize
parameters

module

State
selection
module

State
action

module

QLACS
update
module

State
broadcasting

module

Goal state
module

New state
module

Decision
module

Cooperative
inspection

module

Convergence
decision
module

Transition
module

Update
module

Figure 7: Hybrid architecture.
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Example I of QLACS (Using Figure 5 for optimized route finding)
Parameters used in the first component of QLACS
𝑄 = 2.0, 𝛼 = 3, 𝛽 = 2, 𝜌 = 0.01

Starting State: 𝐹
Terminating State: 𝐶/𝐹
Terminating condition: When all states have been visited at least once and it is at terminating state
State Space = {𝐹, 𝐺, 𝐸,𝐷, 𝐴,𝐵, 𝐶}
Initialize pheromones positions to 0.01
Rand = (0, 1) returns a random value between 0 and 1
Equations
(i) Computation of attractiveness 𝜂

𝑖,𝑗
using (2)

(ii) Computation of instantaneous pheromones by ant 𝑘 for all potential states using (3)
(iii) Pheromone update using (4)
(iv) Computation of probabilities for the potential states using (5)
(v) Adaptation of roulette Wheel using (6)
Equation (5) can be reduced to Let 𝑤(𝑖, 𝑗) = [𝜏

𝑖,𝑗
]
𝛼

[𝜂
𝑖,𝑗
]
𝛽

Sum =
𝑁+!

∑
𝑖=1

𝑤 (𝑖, 𝑗)

So 𝑃
𝑟
(𝑖, 𝑗) = 𝑤

sum

Algorithm 3: Parameters for QLACS Example I.

In our case, there are eight states: primarily seven internal
states and a common terminating state. Since the states are
not just linear, the environment allows for multiple options;
that is, an agent/ant can choose from any present state. This
type of scenario is also called a multigoal scenario.

(ii) State Selection Module. Here, the agents select the start
and end states, which according to our model in Figure 4 are
𝐹 and 𝐶. These states are selected based on the cumulative
probability of two adjacent nodes in (6).

(iii) Transition Module. This module takes care of the tran-
sition rules of the agents by calculating the pheromone
concentrations, distances, and probabilities using (2) through
(4).

(iv)UpdateModule.After transition fromone state to another,
an update of the pheromone is computed, after which
multipath planning with shortest path is achieved.

(v) Convergence Decision Module. This is where the best
trail/path decision is taken.This is the end product of the first
component of QLACS, which is then moved to the second
component of QLACS for cooperative behaviour.

(vi) Cooperative Inspection Module. This is where the robots
are deployed to start inspection. The robots are to use the
acquired best paths starting from 𝐹 and 𝐶, respectively, as
input for the second component of QLACS. The two robots
are to use the learning rate from (9) to learn the environment
and use (10) for cooperation.

(vii) State Broadcasting Module. This module handles the
broadcasting behaviours of the two robots, which are
achieved by using (10). Each robot checks its memory
represented by 𝑄-values before taking any decision.

(viii) State Action Module. State broadcasting by each robot is
immediately followed by action selection. In other words, the
state to inspect or ignore is achieved here using (11).

(ix) QLACS Update Module. After each action selection, the
𝑄-values of each robot are updated using (10).

(x) New State Module. This module takes care of the robot’s
new state after updating the 𝑄-values. Each robot runs in its
own threads, managing its memory, yet sharing information.

(xi) Final Decision Module.This decision module determines
if the robot should exit the environment or still do more
inspections. It is also controlled by (11).

(xii) Goal State Module. The completion of the second com-
ponent of QLACS is getting to the goal state after successful
inspection of states.This goal state according to our model in
Figure 4 is called𝐻.

3.3.3. Analytical Scenario. For the benefit of robotic and
system engineers, practitioners, and researchers, this paper
uniquely presents scenarios on the ease of implementation of
the proposed QLACS as described in Algorithms 3 and 4 and
Tables 7 and 10. The first component of QLACS is explained
in Example I, shown in Algorithm 3 and Table 7. The first
component that achieved optimal route paths for the robots
has the parameters listed in Algorithm 3. The calculation for
different states transition for the first component of QLACS
is analysed in Table 7.

Repeat steps 1–6 for subsequent current states until the
termination condition and state are reached. At the end of
seven updates we have Tables 8 and 9. The total length
shown in Table 8 represents the total number of obstacles
encountered by each agent while trailing to achieve the
optimal route for the robots. The number of obstacle shown
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Example II of QLACS (For good cooperation and communication between robots)
Parameters used in the second component of QLACS (Using output from the first component of QLACS)
Reward Scheme: Inspect = 50, Ignore = 100, Shutdown = 150
State space: Optimized path from QLACS R1 = {𝐹, 𝐸,𝐷, 𝐴, 𝐵, 𝐶, 𝐺, 𝐶} and QLACS R2 = {𝐶, 𝐵, 𝐴,𝐷, 𝐹, 𝐸, 𝐺, 𝐶}

Starting State: 𝐹/𝐶
𝑆
𝑗
= Terminating State: 𝐶 then𝐻

Terminating condition: When all states have been visited.
Initialize 𝑄value positions to zeros
Equations
(i) Compute learning rate using (9)
(ii) Compute update on 𝑄(𝑠, 𝑎) using (10)

Algorithm 4: Parameters for QLACS Example II.

Table 8: Pheromone update of a full cycle.

Pheromone update
Current states 𝐹 𝐺 𝐸 𝐷 𝐴 𝐵 𝐶

𝐹 0.01 2.01 2.01 2.01 0.01 0.01 0.01 1st update
𝐸 0.01 2.66 2.01 2.66 0.01 2.66 0.01 2nd update
𝐷 3.13 0.01 3.03 0.01 3.03 0.01 0.01 3rd update
𝐴 0.01 0.01 0.01 0.45 0.01 0.45 0.01 4th update
𝐵 0.01 0.01 0.67 0.01 0.67 0.01 0.7 5th update
𝐶 0.01 0.91 0.01 0.01 0.01 0.89 0.01 6th update
𝐺 0.71 0.01 0.69 0.01 0.01 0.01 0.71 7th update
𝐶 = terminating state and ant 𝑘 has moved through all states at least once.
Trail: 𝐹𝐸𝐷𝐴𝐵𝐶𝐺𝐶.
Number of obstacles = 1 + 2 + 2 + 2 + 1 + 1 + 1 + 1 = 10.

Table 9: Probability update of a full cycle.

Probability table
Current states 𝐹 𝐺 𝐸 𝐷 𝐴 𝐵 𝐶

𝐹 0 0.33 0.33 0.33 0 0 0
𝐸 0 0.67 0 0.17 0 0.17 0
𝐷 0.69 0 0.16 0 0.16 0 0
𝐴 0 0 0 0.5 0 0.5 0
𝐵 0 0 0.16 0 0.16 0 0.68
𝐶 0 0.52 0 0 0 0.49 0
𝐺 0.45 0 0 0 0 0 0.45
𝐶 = terminating state.

as 10 is calculated using the trail result in Table 8. Table 9
displays the probability update table for a full cycle of route
finding. In the case of this first example, the first robot will
terminate its inspection through 𝐶 and then𝐻.

Algorithm 4 displays the parameters of the second exam-
ple of QLACS. The second component of QLACS handles
this aspect of the model, which is the communication and
cooperative part. Once the first component hands the output
to the second component, it becomes the second component
input and it runs with it. From Algorithm 4, QLACS R1
represents the input for robot 1 and QLACS R2 represents
the input for robot 2 received from the first component of

QLACS. The terminating condition is when all states have
been visited.

The rest of Example II displayed in Table 10 explains the
cooperative behavioural scenario from one state to another
for two robots. The tables in the last row of Table 10 show the
communication and cooperative output achieved using the
second component of QLACS.

4. Experimental Evaluations: Safety
Inspections for MRS Behaviours

The experimental results of implementing QLACS in an
environment that consists of obstacles and links are tabu-
lated in this section. The experimental setup is explained
in Section 4.1. Different performance categories are shown
in this section: without communication category and with
communication category. In the without communication
category, as displayed in Section 4.2, we found that robots
can inspect all states individually without knowing that
another robot exists. Robots can also inspect some of the
states, thereby leaving some states not inspected. The com-
munication category is explained in Section 4.3 while the
performance of the QLACS measured with other existing
methods is tabulated in Section 4.4.

4.1. Experimental Setup. Figure 8 displays different sets of
experiments conducted in the environment using two robots.
Figure 8(a) shows how two robots resume inspection from
two different entrances. In each set of experiments, the robots
take the readings of the roof cracks and level of toxic gases
using their sensors. The same behaviours happen in Figures
8(b) and 8(c), respectively, at different inspection locations.
The inspection locations vary in the four experimental setups
shown in Figure 8.

4.2. Experiment 1: Performance of QLACS without Coop-
eration. The result of implementing the QLACS without
communication in the proposed environment (Figures 1 and
4) is shown in Tables 11 and 12. In the case of Table 11, robot
1 (R1), enters the mine through state 𝐹 while robot 2 (R2)
enters the mine through state 𝐶. However, each robot learns
by inspecting some of the states and ignoring some of the
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Table 10: QLACS Example II cooperative behaviour.

Starting simulation Robot 1
Starting state: F
(1) Use (9)
𝛾 (𝐹) =

0.5

[1 + 1]
=
0.5

2
= 0.25

(2) Check the 𝑄-value for state 𝐹 (use (11))
𝑄 (𝐹, 𝑎) = 0

Selected action, 𝑎 = inspect
(3) use (10)
𝑄 (𝐹, 𝑎) = 50 + 0.25(0) = 50

End of value iteration

Current state: E, Robot 1
(1) Use (9)
𝛾 (𝐸) =

0.5

[1 + 1]
=
0.5

2
= 0.25

(2) Check the Q-value for state 𝐸 (Use (11))
𝑄 (𝐸, 𝑎) = 0

Selected action, 𝑎 = inspect
(3) Use (10)
𝑄 (𝐸, 𝑎) = 50 + 0.25 (max (0, 0, 0)) = 50

End of value iteration

Current state: C, Robot 2
(1) Use (9)
𝛾 (𝐶) =

0.5

[1 + 1]
=
0.5

2
= 0.25

(2) Check the Q-value for state 𝐶 (use (11))
𝑄 (𝐶, 𝑎) = 0

Selected action, 𝑎 = inspect
(3) Use (10)
𝑄 (𝐶, 𝑎) = 50 + 0.25 (max (0, 0, 0)) = 50

End of value iteration

Current state: B, Robot 2
(1) Use (9)
𝛾 (𝐵) =

0.5

[1 + 1]
=
0.5

2
= 0.25

(2) Check the 𝑄-value for state 𝐵 (use (11))
𝑄 (𝐵, 𝑎) = 0

Selected action, 𝑎 = inspect
(3) Use (10)
𝑄 (𝐵, 𝑎) = 50 + 0.25 (max (0, 0, 0)) = 50

End of value iteration

Current state:D, Robot 1
(1) Use (9)
𝛾 (𝐷) =

0.5

[1 + 1]
=
0.5

2
= 0.25

(2) Broadcast (use (11))
𝑄 (𝐷, 𝑎) = 0

Selected action, 𝑎 = inspect
(3) Use (10)
𝑄 (𝐷, 𝑎) = 50 + 0.25 (max (0, 0, 0)) = 50

End of value iteration

Current State: A, Robot 2
(1) Use (9)
𝛾 (𝐴) =

0.5

[1 + 1]
=
0.5

2
= 0.25

(2) Broadcast (use (11))
𝑄 (𝐴, 𝑎) = 0

Selected action, 𝑎 = inspect
(3) Use (10)
𝑄 (𝐴, 𝑎) = 50 + 0.25 (max (0, 0, 0)) = 50

End of value iteration
Current state: A, Robot 1
(1) Use (9)
𝛾 (𝐴) =

0.5

[1 + 0.25]
=

0.5

1.25
= 0.4

(2) Broadcast (use (11))
𝑄 (𝐴, 𝑎) = 50, that is, 𝑄 > 0

Selected action, 𝑎 = Ignore
(3) Use (10)
𝑄 (𝐴, 𝑎) = 100 + 0.4 (max (0, 0, 0)) = 100

End of value iteration

Current state:D, Robot 2
(1) Use (9)
𝛾 (𝐷) =

0.5

[1 + 0.25]
=

0.5

1.25
= 0.4

(2) Broadcast (use (11))
𝑄 (𝐷, 𝑎) = 50, that is, 𝑄 > 0

Selected action, 𝑎 = ignore
(3) Use (10)
𝑄 (𝐷, 𝑎) = 100 + 0.4 (max (0, 0, 0)) = 100

End of value iteration

Current state: B, Robot 1
(1) Use (9)
𝛾 (𝐵) =

0.5

[1 + 0.25]
=

0.5

1.25
= 0.4

(2) Broadcast (use (11))
𝑄 (𝐵, 𝑎) = 50, that is, 𝑄 > 0

Selected action, 𝑎 = Ignore
(3) Use (10)
𝑄 (𝐵, 𝑎) = 100 + 0.4 (max (0, 0, 0)) = 100

End of value iteration
Current state: F, Robot 2
(1) Use (9)
𝛾 (𝐷) =

0.5

[1 + 0.25]
=

0.5

1.25
= 0.4

(2) Broadcast (use (11))
𝑄 (𝐹, 𝑎) = 50, that is, 𝑄 > 0

Selected action, 𝑎 = ignore
(3) Use (10)
𝑄 (𝐹, 𝑎) = 100 + 0.4 (max (0, 0, 0)) = 100

End of value iteration

Current state: C, Robot 1
(1) Use (9)
𝛾 (𝐵) =

0.5

[1 + 0.25]
=

0.5

1.25
= 0.4

(2) Broadcast (use (11))
𝑄 (𝐵, 𝑎) = 50, that is, 𝑄 > 0

Selected action, 𝑎 = Ignore
(3) Use (10)
𝑄 (𝐵, 𝑎) = 100 + 0.4 (max (0, 0, 0)) = 100

End of value iteration

Current state: E, Robot 2
(1) Use (9)
𝛾 (𝐸) =

0.5

[1 + 0.25]
=

0.5

1.25
= 0.4

(2) Broadcast (use (11))
𝑄 (𝐸, 𝑎) = 50, that is, 𝑄 > 0

Selected action, 𝑎 = ignore
(3) Use (10)
𝑄 (𝐸, 𝑎) = 100 + 0.4 (max (0, 0, 0)) = 100

End of value iteration
Current state: G, Robot 1
(1) Use (9)
𝛾 (𝐺) =

0.5

[1 + 1]
=
0.5

2
= 0.25

(2) Broadcast (Use (11))
𝑄 (𝐺, 𝑎) = 0

Selected action, 𝑎 = Inspect
(3) Use (10)
𝑄 (𝐺, 𝑎) = 50 + 0.25 (max (0, 0, 0)) = 50

End of value iteration

Current state: G, Robot 2
(1) Use (9)
𝛾 (𝐺) =

0.5

[1 + 0.25]
=

0.5

1.25
= 0.4

(2) Broadcast (use (11))
𝑄 (𝐺, 𝑎) = 50, that is, 𝑄 > 0

Selected action, 𝑎 = ignore
(3) Use (10)
𝑄 (𝐺, 𝑎) = 100 + 0.4 (max (50, 50, 50))
= 100 + 20 = 120

End of value iteration

Current state: C, Robot 1
(1) Use (9)
𝛾 (𝐶) =

0.5

[1 + 0.4]
=
0.5

1.4
= 0.36

(2) Broadcast (Use (11))
𝑄 (𝐶, 𝑎) = 50

Selected action, 𝑎 = Ignore
(3) Use (10)
𝑄 (𝐶, 𝑎) = 100 + 0.36 (max (50, 50))
= 100 + 18 = 118

End of value iteration
Current state: C, Robot 2
(1) Use (9)
𝛾 (𝐶) =

0.5

[1 + 0.36]
=

0.5

1.36
= 0.37

(2) Broadcast (Use (11))
𝑄 (𝐶, 𝑎) = 50, that is, 𝑄 > 0

Selected action, 𝑎 = ignore
(3) Use (10)
𝑄 (𝐶, 𝑎) = 100 + 0.37 (max (50, 50))
= 100 + 0.37 ∗ 50 = 118.5

End of value iteration

All QLACS 1 states exhausted
Goal state:H, Robot 1
(1) Use (9)
𝛾 (𝐻) =

0.5

[1 + 1]
=
0.5

2
= 0.25

(2) Broadcast (use (11))
𝑄 (𝐻, 𝑎) = 0

Selected action, 𝑎 = Shutdown
(3) Use (10)
𝑄 (𝐻, 𝑎) = 150 + 0.25 (max (0, 0)) = 150

End of value iteration

All QLACS 2 states exhausted
Goal state:H, Robot 2
(4) Use (9)
𝛾 (𝐻) =

0.5

[1 + 1]
=
0.5

2
= 0.25

(5) Broadcast (use (11))
𝑄 (𝐻, 𝑎) = 0

Selected action, 𝑎 = Shutdown
(6) Use (10)
𝑄 (𝐻, 𝑎) = 150 + 0.25 (max (0, 0)) = 150

End of value iteration
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Table 10: Continued.

End of policy iteration

Robot 1 Robot 2
Inspect Ignore Shutdown

𝐹 Yes No No
𝐸 Yes No No
𝐷 Yes No No
𝐴 No Yes No
𝐵 No Yes No
𝐶 No Yes No
𝐺 Yes No No
𝐶 No Yes Yes through 𝐻

Inspect Ignore Shutdown
𝐶 Yes No No
𝐵 Yes No no
𝐴 Yes No No
𝐷 No Yes No
𝐹 No Yes No
𝐸 No Yes No
𝐺 No Yes no
𝐶 No Yes Yes through 𝐻

states. Since there is no communication, they exit the mine
after learning, consequently not inspecting all the states. The
same routine is reflected in Table 12, but in this case, each
robot ends up inspecting all the states before exiting the
mine. Analysis of Tables 11 and 12 shows that resources are
wasted and the inspection job is not effective and efficient.
Comparing the two tables, the time and distance cost are
high, though higher in Table 12 because of many repetitions.
For instance, the time and distance cost in Table 12 column
2 are 48.0028 and ((F, G, E, D, A, B, C), (C, B, A, D, E, G,
F)), respectively. It also shows that the states are repeated in
Tables 11 and 12. The memory usage is equally high. This led
us to create a more efficient QLACS with communication by
introducing some heuristics.The processes involved in Tables
11 and 12 are explained in Table 13.

One can see from Tables 11 and 12 that there is no good
communication among the robots, hence the evolvement of
Table 14.

4.3. Experiment 2: Performance of QLACS with Good Coop-
eration. The heuristic added to the known QL made this
experiment show good communication. This is where our
contribution to communication is shown. As a robot inspects
and learns the environment, it broadcast its 𝑄-values to the
other robot, which is in the form of a lookup table. In this
case, each robot checks for𝑄-values; when a𝑄-value is equal
to zero; the robot randomly selects a state for inspection. If
a 𝑄-value is greater than zero, the robot checks if the state
is available for inspection or for ignoring. When a robot
encounters a state with a𝑄-value equal to zero and the thread
next to the state is equal to the goal state (𝐻), then it shuts
down. It must have checked the lookup table to see that
all states have been inspected. The result in Table 14 shows
good communication between two robots. No states were
inspected more than once. The iterations for every run with
their times, memory usage, and effective communication are
also displayed in Table 14.

Comparing Table 14 with Tables 11 and 12, one cannot but
notice the huge differences in thememory, time, and distance
costs. The communication between the robots in Table 14
resulted in achieving good inspection; however, the random
method of choosing next inspection states did not give an
optimized route, thereby increasing time cost in passing and
checking through inspected states.

(a) Two robots starting inspection from two different entrances

(b) Two robots inspecting as they navigate in the environment

(c) Two robots inspecting different locations with different positions

Figure 8: Different experimental behaviours for two robots.

4.4. Experiment 3: Performance of QLACS for the Navigation
Behaviour of the ProposedModel. The result of implementing
the first component of QLACS for effective navigation of
the proposed model is tabulated in Table 16. Table 15 shows
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Table 11: QLACS without communication (inspecting some states).

Number of runs 1 2 3 4 5 6 7
Iterations 9 10 10 13 13 9 13
Time (sec) 43.0025 30.0017 34.002 30.0017 31.0017 31.0018 27.0016
Memory usage (bytes) 18872 18160 19204 18208 17896 18164 18308
Inspected states (R1) 𝐺 𝐹,𝐺, 𝐶 𝐶 𝐹,𝐷, 𝐵 𝐸, 𝐴 𝐹, 𝐸,𝐷, 𝐴, 𝐶 𝐹, 𝐺, 𝐸, 𝐴

Inspected states (R2) 𝐵,𝐴, 𝐺 𝐶 𝐶, 𝐵, 𝐴, 𝐸, 𝐹 𝐵, 𝐴 𝐶, 𝐵, 𝐸 𝐵, 𝐴, 𝐸 𝐴, 𝐺

Table 12: QLACS without communication (inspecting all states).

Number of runs 1 2 3 4 5 6 7
Iterations 114 10 70 10 9 10 10
Time (sec) 43.0024 48.0028 41.0023 34.0019 34.0019 34.0019 35.002
Memory usage (bytes) 28440 17960 27216 17000 18456 17672 17968

Inspected states (R1) F, G, E, D, A,
B, C

F, G, E, D, A,
B, C

F, G, E, D, A,
B, C

F, G, E, D, A,
B, C

F, G, E, D, A,
B, C

F, G, E, D, A,
B, C

F, G, E, D, A,
B, C

Inspected states (R2) C, B, A, D, E,
G, F

C, B, A, D, E,
G, F

C, B, A, D, E,
G, F

C, B, A, D, E,
G, F

C, B, A, D, E,
G, F

C, B, A, D, E,
G, F

C, B, A, D, E,
G, F

Table 13: Processes used in achieving Tables 11 and 12.

(a) For Table 11

Inspecting some States
(1) Initialize the starting and goal states
(2) Initialize all 𝑄values to zeroes
(3) Select a random action If 𝑄values of all possible actions at
current state are zeroes
(4) Select the action with the highest 𝑄value If it is the Max
𝑄value
(5) Compute and update 𝑄value of the selected action
(6) Get new state among possible states
(7) If new state = goal state then go to Steps 5 and 9
(8) Repeat Steps 3 to 6 until Step 7
(9) Shutdown

(b) For Table 12

Inspecting all States
(1) Initialize the starting and goal states
(2) Initialize all 𝑄values to zeroes
(3) Select a random action If 𝑄values of all possible actions at
current state are zeroes
(4) Select the action with the highest 𝑄value If it is the Max
𝑄value
(5) Compute and update 𝑄value of the selected action
(6) Get new state among possible states
(7) If new state = goal state then go to Steps 5 and 10
(8) Repeat Steps 3 to 7 until Step 9
(9) All states except the goal state has taken Action = Inspect
(10) Shutdown

the selected parameters used in achieving the optimal path.
The optimal path found after nine test runs is the path with
a distance cost of 10 for both entries to the environment,
displayed in Table 16. Therefore, columns 4, 5, 7, 8, and 9 can
be used as the optimized path input for the first component of
QLACS. Then QLACS will use any of the optimized paths to

navigate to the specified states and take decisions accordingly.
For instance, the test run result for nine ants gives 16 iterations
under 60.0035 seconds and giving the shortest paths to both
robots coming from entries 𝐹 and 𝐶 of the environment.The
path that gives us cost as 10 is obtained from FEDABCGC
(1.2.2.2.1.1.1) and CBADFGEGC (1.2.2.1.1.2.2.1), respectively.

Alpha (𝛼), Beta (𝛽), and Rho (𝜌) represent the heuristic
properties of the ACS algorithm. The Alpha factor is the
measure of the influence of pheromone concentration that
can influence the selection of the path with the highest
pheromone concentration. Beta is the measure of the influ-
encewhich is related to the distance between any two adjacent
nodes. It is also a heuristic factor that can measure the
influence distance in selecting the next state. It is not limited
to pheromones. Rho has to do with the rate at which the
pheromones evaporate. Rho shows how often new paths
are explored by the agents/ants rather than reinforcing old
paths. Each agent cooperates by having access to other agents’
pheromone values.The pheromone value is initialized to 0.01
and it is continually updated until learning stops. It is similar
to the first component of QLACS, where we initialize all
QLACS positions to zero and update for every new step.

Table 16 gave the optimized route to be used by the robots
to achieve inspection tasks.This resulted in combining Tables
14 and 16 to achieve Table 17. Table 17 shows optimized time
cost, memory usage, route cost, and good communication.

4.5. Experiment 4: Benchmarking the New Hybrid Model
(QLACS) with Popular Methods. Choosing the optimized
paths, QLACS performs cooperative inspection behaviour
through communication among robots. Looking at the sam-
ple result on Table 17, QLACS chooses the shortest and
complete possible inspection routes from different runs. In
this case, the best paths were obtained from Table 16 by using
9 agents, 10 agents, and 12 agents. All the test runs gave best
trail paths from both entrances listing the complete states
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Table 14: QLACS with communication.

Number of runs 1 2 3 4 5 6 7
Iterations 9 10 9 13 10 10 9
Time (sec) 33.0019 31.0017 31.0018 31.0018 29.0023 30.0017 31.0018
Memory usage (bytes) 15748 15948 15748 18232 16576 15948 15748
Inspected states (R1) 𝐹, 𝐺, 𝐸 𝐹, 𝐺, 𝐸,𝐷 𝐹, 𝐺, 𝐸 𝐹, 𝐸 𝐹, 𝐺, 𝐸,𝐷, 𝐵 𝐹, 𝐺, 𝐸,𝐷 𝐹, 𝐺, 𝐸

Inspected states (R2) 𝐶, 𝐵, 𝐴,𝐷 𝐶, 𝐵, 𝐴 𝐶, 𝐵, 𝐴,𝐷 𝐹, 𝐺, 𝐸,𝐷, 𝐴 𝐶,𝐴 𝐶, 𝐵, 𝐴 𝐶, 𝐵, 𝐴,𝐷

Table 15: Navigation behaviour parameter specification.

ACO properties Type of ACO Population Length of path Pheromone
coefficient 𝛽

Heuristic
coefficient 𝛼 Evaporation rate 𝜌

Properties ACS 9 or 12 8 2 3 0.01
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Figure 9: Comparison of time costs for QL, ACS, and QLACS.
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Figure 10: Comparison of route costs for QL and QLACS.

with length 10 as shown in Table 16; that is, they have states
from 𝐹 to 𝐶 and from 𝐶 to 𝐹. The length is the addition of
weights, along the line (trail edges). Then the QLACS uses
the optimized paths to make decisions on inspections. The
result from Table 17 shows that no state is inspected twice or
visited more than required. The QLACS model concentrates
on making the best inspection decisions for MRS. The first
run on Table 17 shows that nine agents/ants were used for
the route finding, the optimized route was achieved after nine
iterations under 7.0004 sec, and the states where all inspected
effectively without redundancies.
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optimal path.
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Figure 12: Time and iteration required for QLACS to achieve
optimal behavior.

4.5.1. Comparative Study of the ProposedModel (QLACS) with
QL Only and ACS Only. Based on the results tabulated in
Table 18 and Figure 9, the average time costs of achieving the
MRS behaviours for QL, ACS, and QLACS were compared.
Two robots will use an average of 30.8590 sec to achieve
thorough inspection behaviour using QL, an average of
40.4309 sec to achieve optimal navigation behaviour using
ACS, and an average of 9.2868 sec to achieve both navigation
and cooperative behaviour using QLACS. The result shows
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Table 16: Navigation behaviour computations.

Number of runs 1 2 3 4 5 6 7 8 9
Number of Ants 5 7 8 9 10 11 12 15 28
Iterations 12 26 14 16 23 14 16 23 22
Time (sec) 37.0021 37.0021 39.0022 60.0035 32.0019 33.0019 35.002 43.0025 65.0037
Best train distance (R1) 12 12 10 10 10 10 10 10 10
Best trail distance (R2) 10 12 12 10 10 12 10 10 10

Table 17: New hybrid model QLACS computations.

Number of runs 1 2 3 4 5 6 7 8 9
Iterations 9 9 9 9 9 9 9 9 9
Number of ants 9 9 9 10 10 10 12 12 12
Time (sec) 7.0004 8.0005 9.0005 11.0006 11.0006 12.0007 8.0005 9.0005 9.0006
Memory usage (bytes) 10288 10280 10248 10288 10288 10288 10164 10712 10164
Inspected states (R1) 𝐹, 𝐺, 𝐸,𝐷 𝐹, 𝐺, 𝐸,𝐷 𝐹, 𝐺, 𝐸,𝐷 𝐹, 𝐺, 𝐸, 𝐴, 𝐵 𝐹, 𝐺, 𝐸, 𝐴, 𝐵 𝐹, 𝐺, 𝐸, 𝐴, 𝐵 𝐹, 𝐺,𝐷, 𝐴 𝐹, 𝐺,𝐷, 𝐴 𝐹, 𝐺,𝐷, 𝐴

Inspected states (R2) 𝐶, 𝐵, 𝐴 𝐶, 𝐵, 𝐴 𝐶, 𝐵, 𝐴 𝐶,𝐷 𝐶,𝐷 𝐶,𝐷 𝐶, 𝐵, 𝐸 𝐶, 𝐵, 𝐸 𝐶, 𝐵, 𝐸

Table 18: Time cost comparison for QL, ACS, and QLACS.

Runs QL time cost
(sec)

ACS time cost
(sec)

QLACS time
cost (sec)

1 33.0019 37.0021 7.0004
2 31.0019 37.0021 8.004
3 31.0018 39.0022 9.0005
4 31.0018 32.0019 9.0005
5 29.0023 35.002 11.0006
6 30.0017 43.0025 12.0007
7 31.0018 60.0035 9.0006
Average 30.8590 40.4309 9.2868

that our proposed integrated algorithm performs better with
reduced time cost. On the same note, the route costs for the
QL and QLACS were also compared. The results in Table 19
and Figure 10 show that the proposed model QLACS gave a
much lower route cost than the QL.

The number of ants and iterations used to achieve this
is displayed in Figure 11. The more the ants, the more the
iteration.The best routes created in the five test runs shown in
Figure 11 are run numbers 1 and 3. They used fewer ants and
iterations to achieve the optimal routes. The optimal result
for the proposed model is achieved under nine iterations for
every run. The iteration remains constant for any number of
agents and robots.The blue line with starmarkers at Figure 12
is the iteration value for 9 runs. The red line shows the
different amounts of time required for each run. The time
is also almost stable for the QLACS, though it fluctuated a
little in the middle. This signifies that the proposed model
is more robust and effective in finding the optimal route
and coordinating MRS. The reduced route cost and shorter
computation time achieved with the QLACS satisfied the
criteria for cooperative behavioural purposes.

4.6. Experiment 4: Scalability of QLACS Using Two, Three,
and Four Robots. In this section, we present some results
obtained by experimenting with the cooperative behavioural
action of two, three, and four robots using the QLACSmodel.
The performance of the two, three, and four robots was
evaluated by running the simulation three times, using the
same number of agents. The performance of the proposed
QLACSmodel shows good communication between the two,
three, and four robots under the states inspected, in the last
four columns of Table 20. An almost stable time was used in
achieving the inspection for all the robots. The detail of the
simulation result is laid out in Table 20.

A notable observation emanating from Table 20 is that
there is a need for a larger mine area of inspection because
robot R1 in rows 4 to 6 could inspect only one state, while
robots R1 and R2 in rows 7 to 9 could inspect only one state
each. This implies that the size of the field of inspection is
proportional to the number of robots to be deployed.

5. Concluding Remarks

This paper has shown how MRS behave cooperatively in
underground terrains. The QL algorithm has been inves-
tigated for its potential quality of good communication,
while the ACS algorithm was explored for good navigation
properties. The strengths of the two algorithms have been
harnessed and optimized to form a hybrid model QLACS
which addressed the behavioural situation inMRS effectively.

The analytical solution of the newmodel was explained as
shown in Algorithms 3 and 4 and Tables 7 and 10.The hybrid
architecture for themodel was also described in Figure 7.The
experimental setup describing different navigation locations
for two robots was shown in Figure 8.

The new hybrid model QLACS for cooperative behaviour
of MRS in an underground terrain was proven able to find
the optimal route andhandle cooperation between two robots
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Table 19: Route cost comparison for QL and QLACS.

Runs QL (sec) QLACS (sec)
Path cost for R1 Path cost for R2 Path cost for R1 Path cost for R2

1 20 20 10 10
2 32 19 10 10
3 28 14 10 10
4 27 27 10 10
5 39 30 10 10
Average 29.5 22 10 10

Table 20: Summary of scalability performance on QLACS.

Row numbers Number of robots Time (sec) Number of states inspected
Robot 1 (R1) Robot 2 (R2) Robot 3 (R3) Robot 4 (R4)

1 2 10.0006 4 3
2 2 11.0007 4 3
3 2 8.0005 4 3
4 3 16.0009 1 3 3
5 3 17.001 1 3 3
6 3 12.0006 1 3 3
7 4 11.0006 1 1 3 2
8 4 14.0006 1 1 3 2
9 4 10.006 1 1 3 2

effectively. The cooperative behavioural problem was nar-
rowed down to two situations: navigational and cooperative
behaviours. ACS was used to establish the shortest optimal
route for two robots while the QL was used to achieve
effective cooperation decisions. The results achieved after
integrating the two algorithms showed a reduction in route
costs and computation times, as shown in Figures 9, 10, 11, and
12. The comparative analysis between QL, ACS, and QLACS
proved that the last-named is more robust and effective in
achieving cooperative behaviour for MRS in the proposed
domain.

The result of this work will be used for future simulation
of MRS applications in hazardous environments. An indica-
tion of expansion of this research area has conspicuously sur-
faced in both real life implementations and model increase.
The model used in this work can also be improved upon by
increasing the state space.
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