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Abstract. The paper seeks to investigate the use of scalable machine learning 

techniques to address anomaly detection problem in a large Wi-Fi network. 

This was in the efforts of achieving a highly scalable preemptive monitoring 

tool for wireless networks. The Neural Networks, Bayesian Networks and 

Artificial Immune Systems were used for this experiment. Using a set of data 

extracted from a live network of Wi-Fi hotspots managed by an ISP; we 

integrated algorithms into a data collection system to detect anomalous 

performance over several test case scenarios. The results are revealed and 

discussed in terms of both anomaly performance and statistical significance. 
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1   Introduction 

 Wireless Fidelity (Wi-Fi) is a wireless networking technology that uses radio waves 

to provide high-speed wireless internet connections. Wi-Fi is based on the IEEE 

802.11 standards and builds upon a fast, easy and inexpensive networking approach 

[1] where Access Points (APs) are used to broadcast signals to Wi-Fi-capable client 

devices (laptops and Smartphone devices) within their range, and connect to the 

Internet. 

Performance monitoring is an important task upon which large Wi-Fi network 

deployment depends. As traditionally implemented, performance monitoring is based 

on a reactive network approach where the operating system software only warns the 

network administrators when a problem occurs. This approach leads to both the 

halting of important network processes and the hampering of critical business 

processes of the organization.  

Pre-emptive network monitoring provides the potential to prevent the occurrence 

of faults by analyzing the status of the network components to create a fail-safe 

network status or allow a smooth migration from a faulty to fail-safe network status. 

Wi-Fi technology has become so popular and this lead to large scale deployment of 

thousands of hotspots networks. These hotspots generate huge amounts of monitoring 



 

 

data, thus there is a call for efficient data handling methods that would analyze data 

and recognize anomalous hidden patterns and implement fault tolerance mechanism. 

While statistical analysis methods have been deployed in many cases to address this 

issue, soft computing methods borrowed from the human immune system are 

emerging as powerful tools used in anomaly detection and security monitoring 

systems. 

1.1   Related Work 

There has been work done in the field of anomaly detection, and in this paper, three 

soft computing methods were identified, viz. Artificial Neural Networks, Artificial 

Immune Systems and Bayesian Networks. With Artificial Neural Network (ANN), 

the work has focused on employing ANN for anomaly detection on network traffic 

data [2-4]. Artificial Immune Systems (AIS) was used for intrusion detection, and 

detection of computer viruses [5-7].Bayesian Networks were also used for anomaly 

detection for disease outbreak [4] and also in detecting and analyzing anomaly 

behavior in network-based FTP services [8]. 

The three machine learning techniques have gained success in anomaly detection 

and in this paper; we would like to employ them on a large network of Wi-Fi hotspots 

for intrusion detection. The work done in this paper furthers the work by authors in 

[9-11] and the efforts to find out which method works best for large data networks, 

and how each methods performs under network intrusion for the test cases set out in 

this paper.  

1. Which method performs better for monitoring a large Wi-Fi network? 

2. How do these methods perform under different test cases and network thresholds? 

 

The remainder of the paper is organized as follows: in section 2, the machine 

learning techniques used in this article are briefly described. Section 3 will describe 

the research and experiment design. Section 4 will reveal and discuss the experiment 

results while section 5 brings the article to a conclusion. 

2 Algorithms 

Artificial Neural Networks - ANN’s are mathematical or computational models that 

get their inspiration from biological neural systems. In this paper the neural network 

model, Multilayer Perceptron (MLP) was used to conduct experiments. The MLP is a 

feed forward neural network model in which vertices are arranged in layers. MLP 

have one or more layer(s) of hidden nodes, which are not directly connected to the 

input and output nodes [12]. For the purpose of this experiment we employed Weka’s 

Multilayer Perceptron implementation. 

Bayesian Networks - Bayesian Networks can be described briefly as acyclic 

directed graph (DAG) which defines a factorisation of a joint probability distribution 

over the variables that are represented by the nodes of the DAG, where the 

factorisation is given by the direct links of the DAG [13]. The NaiveBayes algorithm 

was used for the experiments. It makes a strong assumption that all attributes of the 



 

 

examples are independent of each other given the context of the class. The Weka’s 

NaiveBayes implements this probabilistic Naïve Bayes classifier [14]. 

Artificial Immune Systems - The AIS takes inspiration from the robust and 

powerful capabilities of the Human Immune System’s (HIS) capabilities to 

distinguish between self and non-self [7].The Algorithm employed in this paper’s 

experiments is the Weka’s Artificial Immune Recognition System (AIRS) learning 

algorithm [15].The AIRS is a supervised AIS learning algorithm that has shown 

significant success on a broad range of classification problems [5-7]. 

3   The Research Design 

The section that follows will describe the methods and techniques used to carry out 

the research presented in this paper. 

3.1   The Wi-Fi Network 

The experiment network connected more than 400 hotspots around the Cape Town 

area, with more than 615 Cisco WRT54GL gateway devices connected to the 

network. For data collection and monitoring, a Syslog daemon program was installed 

on each gateway device, and was left to run 2-3 months collecting monitoring data at 

every hour’s interval. 

3.2   Network Performance Monitoring 

The network was monitored based on three performance metrics. This includes: 

 Uptime and Downtime (%) - This metric measures the availability, stability and 

reliability of the communication device when used in the network. 

 Load Average (%) - Measures the “congestion rate” for the device based on the 

number of users connected to the device.  

 Radio Noise (in dB) - Wi-Fi uses the shared 2.4 GHz spectrum band and the 

proliferation of devices using the spectrum leads to congestion and noisy Wi-Fi 

devices.  

 Standard deviation - To detect aberrant behavior in performance, statistical 

confidence bands were used to measure deviations in a time series. A deviation 

depends on the Delta (δ) parameter whose sensible values were taken between 0 

and 3. 

 Encoding and Selection - Three levels of performance were used to describe 

performance. A 3-bit encoded nominal value was used to describe performance. 

This type of encoding was also used by authors in [11].  



 

 

3.3   Performance Evaluation Techniques 

The effectiveness of the methods is evaluated based on their ability to make correct 

predictions. The following measures were used to quantify the performance of the 

algorithms: 

 True Positive (TP) rate, also known as detection rate. 

 False Positive (FP) rate, also known as false alarm rate. 

 F-measure, it is a harmonic mean for precision and recall. 

 Kappa Statistic - used to measure the agreement between predicted and 

observed categorization of a dataset, while correcting for agreement that occurs 

by chance. 

3.4   Test Cases 

For the test cases in this study, we followed a model suggested by the authors in [92-

Wu Shelly]. We conducted experiments using four test case scenarios revealing Wi-Fi 

operating constraints from loose (e.g.  rural  setting  where  QoS  is  an  issue)  to  the  

most stringent (e.g.  Suburban setting where modern applications demand higher 

QoS).  

The Weka machine learning software was used for the experiments, a stratified 10-

fold cross-validation technique was used for training and testing the algorithms.  

 

 

Fig. 1. Anomaly TP Rate and FP Rate performance 

4   Results and Discussions 

Using the test cases and methods described above; the experiments were conducted 

and results were revealed based on the algorithms’: True Positive (TP), False Positive 

(FP), Kappa Statistic and F-measure performance. A graphical and t-test performance 

evaluation is used. 

 



 

 

4.1   True Positive Rate Performance 

In the bar graph representation of figure 1 above indicates a bar graph representation 

of TP rate and  that the MLP had an average TP rate of 99.45%, while NaiveBayes 

had an average TP rate of 95.62% across all test cases. The AIRS1 algorithm’s 

performance was lower in recognising classes correctly with average TP rate of 

47.65%. 

Table 1. Results for True Positive Rate T-test for Paired Two Samples for Means 

Multilayer 

Perceptron NaiveBayes

Multilayer 

Perceptron AIRS2

Mean 0.9810 0.9563 Mean 0.9810 0.4519

Variance 0.0001 0.0007 Variance 0.0001 0.0524

Observations 200 200 Observations 200 200

Hypothesised Mean Difference 0 Hypothesised Mean Difference 0

t Stat 13.8587 t Stat 32.9818

P(T<=t) two tailed 0.0000 P(T<=t) two tailed 0.0000  
 

For the test: 

True Positive Rate: H0: µMLP - µNaiveBayes = 0 (1) 

True Positive Rate: H1: µMLP - µNaiveBayes ≠ 0 

In table 1, the  value  of  the  t-Statistic  is  13.858  and  its  two-tailed  p-value  is  

5.147E-31.  At the 5% confidence level, the test is highly significant and there is 

overwhelming evidence to infer that the alternative hypothesis is true. Therefore we 

reject the null hypothesis and conclude that  there  is  a  difference  in  the  mean  

anomaly  True  Positive  Rate  for  the  MLP  and NaiveBayes algorithms. 

 

For the test: 

True Positive Rate: H0: µMLP - µAIRS2 = 0 (2) 

True Positive Rate: H1: µMLP - µAIRS2≠ 0 

The  value  of  the  t-Statistic  is  32.981  and  its  two-tailed  p-value  is  1.34191E-82.  

At the 5% confidence level, the test is highly significant and there is overwhelming 

evidence to infer that the alternative hypothesis is true. Therefore we reject the null 

hypothesis and conclude that there is a difference in the mean anomaly True Positive 

Rate for the MLP and AIRS2 algorithms. 

4.2. False Positive Rate Performance 

The bar graph representation in figure 1 indicates that the MLP and NaiveBayes had 

very low average FP rate, 0.77% and 6.45% respectively. A poor performance was 

seen with AIRS1 technique; it had an average FP rate of 23.65%, and had a high FP 

rate of 38.2% in test case 4. 

 

 

 



 

 

For the test: 

False Positive Rate: H0: µMLP - µNaiveBayes = 0 (3) 

False Positive Rate: H1: µMLP - µNaiveBayes ≠ 0 

In table 2 below, the value of the t-Statistic is -2.188 and its two-tailed p-value is 

0.0298. At the 5% confidence level, the test is significant and there is strong evidence 

to infer that the alternative hypothesis is true. Therefore we reject the null hypothesis 

and conclude that there is a difference in the mean anomaly False Positive Rate for 

the MLP and NaiveBayes algorithms. 

Table 2. Results for False Positive Rate T-test for Paired Two Samples for Means 

Multilayer 

Perceptron NaiveBayes

Multilayer 

Perceptron AIRS2

Mean 0.0231 0.0301 Mean 0.0231 0.3507

Variance 0.0009 0.0012 Variance 0.0009 0.0407

Observations 200 200 Observations 200 200

Hypothesised Mean Difference 0 Hypothesised Mean Difference 0

t Stat -2.1882 t Stat -22.4821

P(T<=t) two tailed 0.0298 P(T<=t) two tailed 0.0000  
 

For the test: 

False Positive Rate: H0: µMLP - µAIRS2 = 0 (4) 

False Positive Rate: H1: µMLP - µAIRS2 ≠ 0 

The  value  of  the  t-Statistic  is  -22.482  and  its  two-tailed  p-value  is  1.57884E-

56.  At the 5% confidence level, the test is highly significant and there is 

overwhelming evidence to infer that the alternative hypothesis is true. Therefore we 

reject the null hypothesis and conclude that there is a difference in the mean anomaly 

False Positive Rate for the MLP and AIRS2 algorithms. 

 

 

Fig. 2. Anomaly F-measure and Kappa Statistic performance 

4.3 F-Measure Performance 

The MLP is shown to be, on average, the most accurate of the techniques with an 

average F-measure of 99.45%. The NaiveBayes had an average F-measure of 95.25% 



 

 

across all test cases. This is indicated by the bar graph representation in figure 2. 

AIRS1 revealed poor results with an average F-measure of 53.88%. 

Table 3. Results for F-Measure T-test for Paired Two Samples for Means 

Multilayer 

Perceptron NaiveBayes

Multilayer 

Perceptron AIRS2

Mean 0.9804 0.9528 Mean 0.9804 0.4851

Variance 0.0001 0.0010 Variance 0.0001 0.0482

Observations 200 200 Observations 200 200

Hypothesised Mean Difference 0 Hypothesised Mean Difference 0

t Stat 12.8538 t Stat 32.1631

P(T<=t) two tailed 1.9720 P(T<=t) two tailed 0.0000  

For the test: 

F-Measure: H0: µMLP - µNaiveBayes = 0 (5) 

F-Measure: H1: µMLP - µNaiveBayes ≠ 0 

The  value  of  the  t-Statistic  is  12.853  and  its  two-tailed  p-value  is  6.32577E-28.  

At the 5% confidence level, the test is highly significant and there is overwhelming 

evidence to infer that the alternative hypothesis is true. Therefore we reject the null 

hypothesis and conclude that  there  is  a  difference  in  the  mean  anomaly  F-

measure  for  the  MLP  and  NaiveBayes algorithms. 

For the test: 

F-Measure: H0: µMLP - µAIRS2 = 0 (6) 

F-Measure: H1: µMLP - µAIRS2≠ 0 

The  value  of  the  t-Statistic  is  32.163  and  its  two-tailed  p-value  is  9.08911E-81.  

At the 5% confidence level, the test is highly significant and there is overwhelming 

evidence to infer that the alternative hypothesis is true. Therefore we reject the null 

hypothesis and conclude that there is a difference in the mean anomaly F-measure for 

the MLP and AIRS2 algorithms. 

4.4 Kappa Statistic Performance 

Indicated by the bar graph in figure 2, the MLP and NaiveBayes had an average 

Kappa statistic of 98.59% and 89.05%, respectively. AIRS1 technique had an average 

Kappa statistic of 15.22%, revealing poor accuracy and precision. 



 

 

Table 4. Results for Kappa Statistic T-test for Paired Two Samples for Means 

Multilayer 

Perceptron NaiveBayes

Multilayer 

Perceptron AIRS2

Mean 0.9512 0.8906 Mean 0.9512 0.1551

Variance 0.0005 0.0052 Variance 0.0005 0.0157

Observations 200 200 Observations 200 200

Hypothesised Mean Difference 0 Hypothesised Mean Difference 0

t Stat 12.5824 t Stat 91.0005

P(T<=t) two tailed 1.9720 P(T<=t) two tailed 0.0000  

For the test: 

Kappa Statistic: H0: µMLP - µNaiveBayes = 0 (7) 

Kappa Statistic: H1: µMLP - µNaiveBayes ≠ 0 

The  value  of  the  t-Statistic  is  12.58  and  its  two-tailed  p-value  is  4.29687E-27.  

At the 5% confidence level, the test is highly significant and there is overwhelming 

evidence to infer that the alternative hypothesis is true. Therefore we reject the null 

hypothesis and conclude that there is a difference in the mean anomaly Kappa 

Statistic for the MLP and NaiveBayes algorithms. 

For the test: 

Kappa Statistic: H0: µMLP - µAIRS2 = 0 (8) 

Kappa Statistic: H1: µMLP - µAIRS2≠ 0 

The value of the t-Statistic is 91.00 and its two-tailed p-value is 4.14E-164. At 5% 

confidence level,  the  test  is  highly  significant  and  there  is  overwhelming  

evidence  to  infer  that  the alternative hypothesis is true. Therefore we reject the null 

hypothesis and conclude that there is a difference in the mean anomaly Kappa 

Statistic for the MLP and AIRS2 algorithms. 

5 Conclusions 

The  statistical  hypothesis  test  experiments, tables 1 to 4,  that were conducted  for  

anomaly  performance  detection reveal that, in all algorithm performance measures, 

there is a significant mean difference among the three algorithms. One can safely 

conclude that there was a significant difference in mean performance measures for 

MLP, NaiveBayes and the AIRS2 algorithms. 

The  bar  chart  representations  in  figure  1 and 2  were  carefully  examined,  and  

for  all performance measures, the MLP had an overall good performance and came 

out with the highest (above 90%) algorithm  performance  measures. The NaiveBayes 

also had a good performance that was slightly lower than that of the MLP. On the 

other hand, the AIRS2 had a poor performance relative to the MLP and NaiveBayes. 

When applying the algorithms to a large Wi-Fi networking problem, the MLP 

would be a better option as it would produce more accurate results. The NaiveBayes 

would also produce good results, but not better than that of the MLP. On the other 



 

 

hand, the AIRS2 algorithm may produce mediocre performance results on a large Wi-

Fi network monitoring problem. 
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